## ---- eval=FALSE--------------------------------------------------------- # # Install devtools package # utils::install.packages('devtools') # # Install scISR from GitHub # devtools::install_github('duct317/scISR') ## ---- eval=FALSE--------------------------------------------------------- # #Load required library # library(scISR) # # # Load example data (Goolam dataset with reduced number of genes), other dataset can be download from our server at http://scisr.tinnguyen-lab.com/ # data('Goolam') # # Raw data # raw <- Goolam$data # # Cell types information # label <- Goolam$label ## ---- eval=FALSE--------------------------------------------------------- # # Generating subtyping result # set.seed(1) # imputed <- scISR(data = raw, ncores = 4) ## ---- eval=FALSE--------------------------------------------------------- # library(irlba) # library(mclust) # # Perform PCA and k-means clustering on raw data # set.seed(1) # # Filter genes that have only zeros from raw data # raw_filer <- raw[rowSums(raw != 0) > 0, ] # pca_raw <- irlba::prcomp_irlba(t(raw_filer), n = 50)$x # cluster_raw <- kmeans(pca_raw, length(unique(label)), # nstart = 2000, iter.max = 2000)$cluster # print(paste('ARI of clusters using raw data:', round(adjustedRandIndex(cluster_raw, label),3))) # # # Perform PCA and k-means clustering on imputed data # set.seed(1) # pca_imputed <- irlba::prcomp_irlba(t(imputed), n = 50)$x # cluster_imputed <- kmeans(pca_imputed, length(unique(label)), # nstart = 2000, iter.max = 2000)$cluster # print(paste('ARI of clusters using imputed data:', round(adjustedRandIndex(cluster_imputed, label),3))) ## ---- eval=FALSE--------------------------------------------------------- # sessionInfo()