sanba: Fitting Shared Atoms Nested Models via MCMC or Variational Bayes
    An efficient tool for fitting nested mixture models based on a shared set of 
    atoms via Markov Chain Monte Carlo and variational inference algorithms. 
    Specifically, the package implements the common atoms model (Denti et al., 2023), 
    its finite version (similar to D'Angelo et al., 2023), and a hybrid finite-infinite 
    model (D'Angelo and Denti, 2024). All models implement univariate nested mixtures 
    with Gaussian kernels equipped with a normal-inverse gamma prior distribution 
    on the parameters. Additional functions are provided to help analyze the 
    results of the fitting procedure.   
    References:       
    Denti, Camerlenghi, Guindani, Mira (2023) <doi:10.1080/01621459.2021.1933499>,      
    D’Angelo, Canale, Yu, Guindani (2023) <doi:10.1111/biom.13626>,      
    D’Angelo, Denti (2024) <doi:10.1214/24-BA1458>.
| Version: | 0.0.3 | 
| Imports: | Rcpp, matrixStats, salso, scales, RColorBrewer | 
| LinkingTo: | Rcpp, RcppArmadillo, RcppProgress | 
| Suggests: | spelling | 
| Published: | 2025-09-24 | 
| DOI: | 10.32614/CRAN.package.sanba | 
| Author: | Francesco Denti  [aut, cre, cph],
  Laura D'Angelo  [aut] | 
| Maintainer: | Francesco Denti  <francescodenti.personal at gmail.com> | 
| BugReports: | https://github.com/fradenti/sanba/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/fradenti/sanba | 
| NeedsCompilation: | yes | 
| Language: | en-US | 
| Materials: | README, NEWS | 
| CRAN checks: | sanba results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=sanba
to link to this page.