## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(resquin) nep_resp_styles <- resp_styles( x = nep, scale_min = 1, # minimum response option scale_max = 5, # maximum response option min_valid_responses = 1) # default, excludes respondents with any missing value summary(nep_resp_styles) ## ----------------------------------------------------------------------------- first_flagging <- flag_resp(nep_resp_styles, ARS > 0.8) summary(first_flagging) ## ----------------------------------------------------------------------------- nep_resp_patterns <- resp_patterns(nep) nep_resp_patterns_resp_styles <- cbind(nep_resp_styles,nep_resp_patterns[,-1]) second_flagging <- flag_resp(nep_resp_patterns_resp_styles, ARS > 0.8, longest_string_length >= 8) summary(second_flagging) ## ----------------------------------------------------------------------------- flag_resp(nep_resp_patterns_resp_styles, ARS > 0.8, longest_string_length >= 8, ARS > 0.8 | longest_string_length >= 8) |> summary() ## ----------------------------------------------------------------------------- random_vector <- sample(c(F,T),1000,replace = T) random_vector[is.na(nep_resp_styles$ARS)] <- NA # Add missing data as in the other data frames # example three contains response indicator values per respondent external_indicator_data <- cbind( nep_resp_patterns_resp_styles, new_indicator = random_vector) flag_resp(external_indicator_data, ARS > 0.8, longest_string_length >= 8, new_indicator == T) |> summary() ## ----------------------------------------------------------------------------- flag_df <- flag_resp( nep_resp_patterns_resp_styles, ARS > 0.8, longest_string_length >= 8, ARS > 0.8 | longest_string_length >= 8) flag_df ## ----------------------------------------------------------------------------- # Exclude the 33 flagged respondents with ARS > 0.8 nep[!flag_df$`ARS > 0.8`,] |> na.omit() #exclude respondents with missing values ## ----------------------------------------------------------------------------- # Extract only the 33 flagged respondents with ARS 0.8 nep[flag_df$`ARS > 0.8`,] |> na.omit()