## ----setup, echo = FALSE, message = FALSE------------------------------------- library(knitr) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.path = "VIGNETTE-" ) set.seed(42) ## ----out.width = "100%", echo = FALSE----------------------------------------- include_graphics("VIGNETTE-ts-example.png") ## ----out.width = "100%", echo = FALSE----------------------------------------- include_graphics("VIGNETTE-spreadsheet-screenshot.png") ## ----library, message=FALSE--------------------------------------------------- library(readabs) library(dplyr) library(ggplot2) ## ----read-wpi-all, eval = FALSE----------------------------------------------- # wpi <- read_abs("6345.0") ## ----create-local-wpi, include=FALSE, eval=FALSE------------------------------ # wpi <- read_abs("6345.0") # wpi <- head(wpi) # saveRDS(wpi, "wpi.rds") ## ----load-local-wpi, include = FALSE------------------------------------------ wpi <- readRDS("wpi.rds") ## ----glimpse-wpi-------------------------------------------------------------- head(wpi) ## ----create-local-lfs, include=FALSE, eval=FALSE------------------------------ # lfs_1 <- read_abs("6202.0", tables = 1) # lfs_1 <- head(lfs_1) # saveRDS(lfs_1, "lfs_1.rds") # # lfs_5 <- read_abs("6202.0", tables = 5) # # lfs_5 <- head(lfs_5) # saveRDS(lfs_5, "lfs_5.rds") ## ----read-local-lfs_1, include=FALSE------------------------------------------ lfs_1 <- readRDS("lfs_1.rds") ## ----read-lfs-1, eval = FALSE------------------------------------------------- # lfs_1 <- read_abs("6202.0", tables = 1) ## ----glimpse_lfs_1------------------------------------------------------------ head(lfs_1) ## ----read-local-lfs_1_t, include=FALSE---------------------------------------- lfs_5 <- readRDS("lfs_5.rds") lfs_1_5 <- bind_rows(lfs_1, lfs_5) ## ----read-lfs-1-5, eval=FALSE------------------------------------------------- # lfs_1_5 <- read_abs("6202.0", tables = c(1, 5)) ## ----glimpse_lfs_1_5---------------------------------------------------------- head(lfs_1_5) ## ----create-local-seriesid, eval=FALSE, include=FALSE------------------------- # employed <- read_abs(series_id = "A84423127L") # employed <- head(employed) # saveRDS(employed, "employed.rds") ## ----read-local-seriesid, include = FALSE------------------------------------- employed <- readRDS("employed.rds") ## ----read-abs-seriesid, eval = FALSE------------------------------------------ # employed <- read_abs(series_id = "A84423127L") ## ----glimpse-seriesid--------------------------------------------------------- head(employed) unique(employed$series) ## ----examine-lfs-------------------------------------------------------------- unique(lfs_1$series) ## ----separate-series---------------------------------------------------------- lfs_1_sep <- lfs_1 %>% separate_series() lfs_1_sep %>% group_by(series_1, series_2) %>% summarise() ## ----create-unemp-df---------------------------------------------------------- unemp <- lfs_1_sep %>% filter(series_1 == "Unemployment rate") unique(unemp$series_1) unique(unemp$series_2) ## ----filter-male-female------------------------------------------------------- unemp <- unemp %>% filter(series_2 %in% c("Males", "Females")) unique(unemp$series_2) ## ----graph-unemp, dpi = 200--------------------------------------------------- unemp %>% filter(series_type == "Seasonally Adjusted") %>% mutate(sex = series_2) %>% ggplot(aes(x = date, y = value, col = sex)) + geom_line() + theme_minimal() + theme( legend.position = "bottom", axis.title = element_blank(), legend.title = element_blank(), text = element_text(size = 5) ) + labs( title = "The male and female unemployment rates have converged", subtitle = "Unemployment rates for Australian men and women (aged 15+), 1978-2018 (per cent)", caption = "Source: ABS 6202.0" ) ## ----read-lfs-local-catno, eval = FALSE--------------------------------------- # lfs_local_1 <- read_abs_local("6202.0") ## ----eval = FALSE------------------------------------------------------------- # search_catalogues("labour force") ## ----eval = FALSE, include = FALSE-------------------------------------------- # cats <- search_catalogues("labour force") # saveRDS(cats, "cats.rds") ## ----echo = FALSE------------------------------------------------------------- readRDS("cats.rds") ## ----eval = FALSE------------------------------------------------------------- # search_files("GM1", "labour-force-australia") ## ----echo = FALSE------------------------------------------------------------- x <- "GM1.xlsx" x ## ----eval=FALSE--------------------------------------------------------------- # gm1_path <- download_abs_data_cube("labour-force-australia", "GM1") # # print(gm1_path) ## ----include=FALSE------------------------------------------------------------ print("/var/folders/_4/ngvkm2811nbd8b_v66wytw1r0000gn/T//RtmpZT2ffU/GM1.xlsx") ## ----eval=FALSE, include=FALSE------------------------------------------------ # gf <- read_lfs_grossflows() # gf <- head(gf) # saveRDS(gf, "gf.rds") ## ----include=FALSE------------------------------------------------------------ gf <- readRDS("gf.rds") ## ----eval=FALSE--------------------------------------------------------------- # gf <- read_lfs_grossflows() ## ----------------------------------------------------------------------------- head(gf) ## ----eval=FALSE, include=FALSE------------------------------------------------ # payrolls <- read_payrolls("sa3_jobs") # payrolls <- head(payrolls) # saveRDS(payrolls, "payrolls.rds") ## ----include=FALSE------------------------------------------------------------ payrolls <- readRDS("payrolls.rds") ## ----eval=FALSE--------------------------------------------------------------- # payrolls <- read_payrolls() ## ----------------------------------------------------------------------------- head(payrolls)