## ----------------------------------------------------------------------------- # Load the package into R library(rdiversity) # Initialise data partition <- data.frame(a=c(1,1),b=c(2,0),c=c(3,1)) row.names(partition) <- c("cows", "sheep") ## ----------------------------------------------------------------------------- # Generate metacommunity object meta <- metacommunity(partition = partition) ## ----------------------------------------------------------------------------- # Initialise similarity matrix s <- matrix(c(1, 0.5, 0.5, 1), nrow = 2) row.names(s) <- c("cows", "sheep") colnames(s) <- c("cows", "sheep") # Generate similarity object s <- similarity(similarity = s, dat_id = "my_taxonomic") # Generate metacommunity object meta <- metacommunity(partition = partition, similarity = s) ## ----------------------------------------------------------------------------- # Initialise distance matrix d <- matrix(c(0, 0.7, 0.7, 0), nrow = 2) row.names(d) <- c("cows", "sheep") colnames(d) <- c("cows", "sheep") # Generate distance object d <- distance(distance = d, dat_id = "my_taxonomic") # Convert the distance object to similarity object (by means of a linear or exponential transform) s <- dist2sim(dist = d, transform = "linear") # Generate metacommunity object meta <- metacommunity(partition = partition, similarity = s) ## ----------------------------------------------------------------------------- # Initialise data partition <- data.frame(a=c(1,1),b=c(2,0),c=c(3,1)) row.names(partition) <- c("cows", "sheep") # Generate a metacommunity object meta <- metacommunity(partition) # Calculate diversity norm_sub_alpha(meta, 0:2) ## ----------------------------------------------------------------------------- # Initialise data partition <- data.frame(a=c(1,1),b=c(2,0),c=c(3,1)) row.names(partition) <- c("cows", "sheep") # Generate a metacommunity object meta <- metacommunity(partition) # Calculate the species-level component for normalised alpha component <- norm_alpha(meta) # Calculate normalised alpha at the subcommunity-level subdiv(component, 0:2) # Likewise, calculate normalised alpha at the metacommunity-level metadiv(component, 0:2) ## ----------------------------------------------------------------------------- # Calculate all subcommunity diversity measures subdiv(meta, 0:2) # Calculate all metacommunity diversity measures metadiv(meta, 0:2) ## ----------------------------------------------------------------------------- # Taxonomic lookup table Species <- c("tenuifolium", "asterolepis", "simplex var.grandiflora", "simplex var.ochnacea") Genus <- c("Protium", "Quararibea", "Swartzia", "Swartzia") Family <- c("Burseraceae", "Bombacaceae", "Fabaceae", "Fabaceae") Subclass <- c("Sapindales", "Malvales", "Fabales", "Fabales") lookup <- cbind.data.frame(Species, Genus, Family, Subclass) # Partition matrix partition <- matrix(rep(1, 8), nrow = 4) colnames(partition) <- LETTERS[1:2] rownames(partition) <- lookup$Species ## ----------------------------------------------------------------------------- values <- c(Species = 0, Genus = 1, Family = 2, Subclass = 3, Other = 4) ## ----------------------------------------------------------------------------- d <- tax2dist(lookup, values) ## ----------------------------------------------------------------------------- s <- dist2sim(d, "linear") ## ----------------------------------------------------------------------------- meta <- metacommunity(partition, s) ## ----------------------------------------------------------------------------- meta_gamma(meta, 0:2) ## ----------------------------------------------------------------------------- # Example data tree <- ape::rtree(4) partition <- matrix(1:12, ncol=3) partition <- partition/sum(partition) ## ----------------------------------------------------------------------------- d <- phy2dist(tree) ## ----------------------------------------------------------------------------- s <- dist2sim(d, "linear") ## ----------------------------------------------------------------------------- meta <- metacommunity(partition, s) ## ----------------------------------------------------------------------------- meta_gamma(meta, 0:2) ## ----------------------------------------------------------------------------- tree <- ape::rtree(4) partition <- matrix(1:12, ncol=3) partition <- partition/sum(partition) colnames(partition) <- letters[1:3] row.names(partition) <- paste0("sp",1:4) tree$tip.label <- row.names(partition) ## ----------------------------------------------------------------------------- s <- phy2branch(tree, partition) ## ----------------------------------------------------------------------------- meta <- metacommunity(partition, s) ## ----------------------------------------------------------------------------- meta_gamma(meta, 0:2) ## ---- eval = FALSE------------------------------------------------------------ # library(rdiversity) # vcf_file <- system.file("extdata", "pinf_sc50.vcf.gz", package = "pinfsc50") # #read in twice: first for the column names then for the data # tmp_vcf <- readLines(vcf_file) # vcf_data <- read.table(vcf_file, stringsAsFactors = FALSE) # # filter for the columns names # vcf_names <- unlist(strsplit(tmp_vcf[grep("#CHROM",tmp_vcf)],"\t")) # names(vcf_data) <- vcf_names # partition <- cbind.data.frame(A = c(rep(1, 9), rep(0, 9)), B = c(rep(0, 9), rep(1, 9))) # partition <- partition/sum(partition) ## ---- eval = FALSE------------------------------------------------------------ # d <- gen2dist(vcf) ## ---- eval = FALSE------------------------------------------------------------ # s <- dist2sim(d, transform = 'l') ## ---- eval = FALSE------------------------------------------------------------ # rownames(partition) <- rownames(s@similarity) # meta <- metacommunity(partition, s) ## ---- eval = FALSE------------------------------------------------------------ # norm_meta_beta(meta, 0:2) ## ----------------------------------------------------------------------------- partition <- matrix(sample(6), nrow = 3) rownames(partition) <- paste0("sp", 1:3) partition <- partition / sum(partition) d <- matrix(c(0,.75,1,.75,0,.3,1,.3,0), nrow = 3) rownames(d) <- paste0("sp", 1:3) colnames(d) <- paste0("sp", 1:3) d <- distance(d, "my_taxonomy") s <- dist2sim(d, "linear") meta <- metacommunity(partition, s) ## ----------------------------------------------------------------------------- partition <- matrix(sample(6), nrow = 3) rownames(partition) <- paste0("sp", 1:3) partition <- partition / sum(partition) s <- matrix(c(1,.8,0,.8,1,.1,0,.1,1), nrow = 3) rownames(s) <- paste0("sp", 1:3) colnames(s) <- paste0("sp", 1:3) s <- similarity(s, "my_functional") meta <- metacommunity(partition, s) ## ----------------------------------------------------------------------------- tree <- ape::rtree(5) tree$tip.label <- paste0("sp", 1:5) partition <- matrix(rep(1,10), nrow = 5) row.names(partition) <- paste0("sp", 1:5) partition <- partition / sum(partition) s <- phy2branch(tree, partition) meta <- metacommunity(partition, s) new_partition <- matrix(sample(10), nrow = 5) row.names(new_partition) <- paste0("sp", 1:5) new_partition <- new_partition / sum(new_partition) new_meta <- repartition(meta, new_partition)