## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----loadPackage-------------------------------------------------------------- library(rbioacc) # library(ggplot2) ## ----dataMGS------------------------------------------------------------------ data("Male_Gammarus_Single") ## ----fitMGS, cache=TRUE, results="hide"--------------------------------------- modelData_MGS <- modelData(Male_Gammarus_Single, time_accumulation = 4) fit_MGS <- fitTK(modelData_MGS, iter = 10000) ## ----statsMGS----------------------------------------------------------------- quantile_table(fit_MGS) ## ----plotMGS, fig.height=4, fig.width=5--------------------------------------- plot(fit_MGS) ## ----ppcMGS, fig.height=4, fig.width=5---------------------------------------- ppc(fit_MGS) ## ----fitMGM708, cache=TRUE, results="hide", eval=FALSE------------------------ # data("Male_Gammarus_Merged") # data_MGM708 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 7.08021e-05, ] # modelData_MGM708 <- modelData(data_MGM708, time_accumulation = 4) # fit_MGM708 <- fitTK(modelData_MGM708, iter = 10000) ## ----statMGM708, eval=FALSE--------------------------------------------------- # quantile_table(fit_MGM708) ## ----plotMGM708, fig.height=4, fig.width=5, eval=FALSE------------------------ # plot(fit_MGM708) ## ----ppcMGM708, fig.height=4, fig.width=5, eval=FALSE------------------------- # ppc(fit_MGM708) ## ----fitMGM141, cache=TRUE, results="hide", eval=FALSE------------------------ # data_MGM141 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 1.41604e-04, ] # modelData_MGM141 <- modelData(data_MGM141, time_accumulation = 7) # fit_MGM141 <- fitTK(modelData_MGM141, iter = 20000) ## ----statMGM141, eval=FALSE--------------------------------------------------- # quantile_table(fit_MGM141) ## ----plotMGM141, fig.height=4, fig.width=5, eval=FALSE------------------------ # plot(fit_MGM141) ## ----ppcMGM141, fig.height=4, fig.width=5, eval=FALSE------------------------- # ppc(fit_MGM141) ## ----fitMGM283, cache=TRUE, results="hide", eval=FALSE------------------------ # data_MGM283 <- Male_Gammarus_Merged[Male_Gammarus_Merged$expw == 2.83208e-04, ] # modelData_MGM283 <- modelData(data_MGM283, time_accumulation = 4) # fit_MGM283 <- fitTK(modelData_MGM283, iter = 10000) ## ----statMGM283, eval=FALSE--------------------------------------------------- # quantile_table(fit_MGM283) ## ----plotMGM283, fig.height=4, fig.width=5, eval=FALSE------------------------ # plot(fit_MGM283) ## ----ppcMGM283, fig.height=4, fig.width=5, eval=FALSE------------------------- # ppc(fit_MGM283) ## ----fitMGSG, eval=FALSE------------------------------------------------------ # data("Male_Gammarus_seanine_growth") # modelData_MGSG <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 1.417) # fit_MGSG <- fitTK(modelData_MGSG, iter = 10000) ## ----statsMGSG, eval=FALSE---------------------------------------------------- # quantile_table(fit_MGSG) ## ----plotMGSG, fig.height=6, fig.width=7, eval=FALSE-------------------------- # plot(fit_MGSG) ## ----ppcMGSG, fig.height=6, fig.width=7, eval=FALSE--------------------------- # ppc(fit_MGSG) ## ----fitOT440, cache=TRUE, results="hide", eval=FALSE------------------------- # data("Oncorhynchus_two") # Pimephales_two # data_OT440 = Oncorhynchus_two[Oncorhynchus_two$expw == 0.00440,] # modelData_OT440 <- modelData(data_OT440, time_accumulation = 49) # fit_OT440 <- fitTK(modelData_OT440, iter = 10000) ## ----statOT440, eval=FALSE---------------------------------------------------- # quantile_table(fit_OT440) ## ----plotOT440, fig.height=4, fig.width=5, eval=FALSE------------------------- # plot(fit_OT440) ## ----ppcOT440, fig.height=4, fig.width=5, eval=FALSE-------------------------- # ppc(fit_OT440) ## ----fitOT041, cache=TRUE, results="hide", eval=FALSE------------------------- # data_OT041 <- Oncorhynchus_two[Oncorhynchus_two$expw == 0.00041,] # modelData_OT041 <- modelData(data_OT041, time_accumulation = 49) # fit_OT041 <- fitTK(modelData_OT041, iter = 10000) ## ----statOT041, eval=FALSE---------------------------------------------------- # quantile_table(fit_OT041) ## ----plotOT041, fig.height=4, fig.width=5, eval=FALSE------------------------- # plot(fit_OT041) ## ----ppcOT041, fig.height=4, fig.width=5, eval=FALSE-------------------------- # ppc(fit_OT041) ## ----fitCB, cache=TRUE, results="hide", eval=FALSE---------------------------- # data("Chironomus_benzoapyrene") # modelData_CB <- modelData(Chironomus_benzoapyrene, time_accumulation = 3) # modelData_CB$unifMax = modelData_CB$unifMax * 100 # fit_CB <- fitTK(modelData_CB, iter = 10000) ## ----statCB, eval=FALSE------------------------------------------------------- # quantile_table(fit_CB) ## ----plotCB, fig.height=4, fig.width=5, eval=FALSE---------------------------- # plot(fit_CB) ## ----ppcCB, fig.height=4, fig.width=5, eval=FALSE----------------------------- # ppc(fit_CB) ## ----predictMGS, eval=FALSE--------------------------------------------------- # data("Male_Gammarus_Single") # modelData_MGS <- modelData(Male_Gammarus_Single, time_accumulation = 4) # fit_MGS <- fitTK(modelData_MGS, iter = 5000, chains = 3) # # # Data 4 prediction should respect the exposure routes # data_4pred <- data.frame( time = 1:25, expw = 4e-5 ) # predict_MGS <- predict(fit_MGS, data_4pred) # plot(predict_MGS) ## ----predictMGSG, eval=FALSE-------------------------------------------------- # # data("Male_Gammarus_seanine_growth") # # modelData_MGSG <- modelData(Male_Gammarus_seanine_growth, time_accumulation = 4) # # fit_MGSG <- fitTK(modelData_MGSG, iter = 5000, chains = 3) # # # # # Data 4 prediction should respect the exposure routes # # data_4pred <- data.frame( time = 1:25, expw = 18 ) # # predict_MGSG <- predict(fit_MGSG, data_4pred) # # plot(predict_MGSG) ## ----predictCC, eval=FALSE---------------------------------------------------- # data("Chiro_Creuzot") # Chiro_Creuzot <- Chiro_Creuzot[Chiro_Creuzot$replicate == 1,] # modelData_CC <- modelData(Chiro_Creuzot, time_accumulation = 1.0) # fit_CC <- fitTK(modelData_CC, iter = 5000, chains = 3) # # -------- # quantile_table(fit_CC) # # # Data 4 prediction should respect the exposure routes # data_4pred <- data.frame( time = 1:25, expw = 18, exps = 1200, exppw = 15 ) # predict_CC <- predict(fit_CC, data_4pred) # plot(predict_CC)