## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(rMOST) ## ----------------------------------------------------------------------------- ## Input ## # Predictor intercorrelation matrix Rx <- matrix(c( 1, .37, .51, .16, .25, .37, 1, .03, .31, .02, .51, .03, 1, .13, .34, .16, .31, .13, 1,-.02, .25, .02, .34,-.02, 1), 5, 5) # Criterion validity of the predictors Rxy1 <- c(.32, .52, .22, .48, .20) Rxy2 <- c(.30, .35, .15, .25, .10) Rxy3 <- c(.15, .25, .30, .35, .10) # Overall selection ratio sr <- 0.15 # Proportion of minority applicants prop_b <- 1/8 # Proportion of Black applicants (i.e., (# of Black applicants)/(# of all applicants)) prop_h <- 1/6 # Proportion of Hispanic applicants # Predictor subgroup d d_wb <- c(.39, .72, -.09, .39, .04) # White-Black subgroup difference d_wh <- c(.17, .79, .08, .04, -.14) # White-Hispanic subgroup difference ## ----------------------------------------------------------------------------- # Example: 3 non-adverse impact objectives out_3C = MOST(optProb = "3C", # predictor intercorrelations Rx = Rx, # predictor - objective relations Rxy1 = Rxy1, # non-AI objective 1 Rxy2 = Rxy2, # non-AI objective 2 Rxy3 = Rxy3, # non-AI objective 3 Spac = 10) # The first few solutions head(out_3C) ## ----------------------------------------------------------------------------- # Example: 2 non-adverse impact objectives & 1 adverse impact objective out_2C_1AI = MOST(optProb = "2C_1AI", # predictor intercorrelations Rx = Rx, # predictor - objective relations Rxy1 = Rxy1, # non-AI objective 1 Rxy2 = Rxy2, # non-AI objective 2 d1 = d_wb, # subgroup difference for minority 1 # selection ratio sr = sr, # proportion of minority prop1 = prop_b, # minority 1 Spac = 10) # The first few solutions head(out_2C_1AI) ## ----------------------------------------------------------------------------- # Example: 1 non-adverse impact objective & 2 adverse impact objectives out_1C_2AI = MOST(optProb = "1C_2AI", # predictor intercorrelations Rx = Rx, # predictor - objective relations Rxy1 = Rxy1, # non-AI objective 1 d1 = d_wb, # subgroup difference for minority 1 d2 = d_wh, # subgroup difference for minority 2 # selection ratio sr = sr, # proportion of minority prop1 = prop_b, # minority 1 prop2 = prop_h, # minority 2 Spac = 10) # The first few solutions head(out_1C_2AI) ## ----------------------------------------------------------------------------- out_3C[1, 6:ncol(out_3C)] ## ----------------------------------------------------------------------------- out_3C[1, 3:5]