## ----echo=FALSE--------------------------------------------------------------- library(knitr) library(qsimulatR) knitr::opts_chunk$set(fig.align='center', comment='') ## ----------------------------------------------------------------------------- summands <- function(x, n, N) { b <- as.integer(intToBits(x)) ret <- c() for(i in c(1:N)) { s <- 0 for(j in c(1:N)) { s <- s+as.integer(b[j])*2^(i+j-2) } ret[i] <- s %% n } return(ret) } ## ----------------------------------------------------------------------------- x <- 3 summands(3, 2^3, 3) ## ----------------------------------------------------------------------------- cRtheta <- function(bits, theta=0.) { cqgate(bits=bits, gate=methods::new("sqgate", bit=as.integer(bits[2]), M=array(as.complex(c(1, 0, 0, exp(1i*theta))), dim=c(2,2)), type="Rt")) } ## ----------------------------------------------------------------------------- cadd <- function(c, bits, x, y) { n <- length(bits) z <- cqft(c=c, x=x, bits=bits) for(i in c(1:n)) { z <- cRtheta(bits=c(c, bits[i]), theta = 2*pi*y/2^(n-i+1)) * z } z <- cqft(c=c, x=z, inverse=TRUE, bits=bits) return(invisible(z)) } ## ----------------------------------------------------------------------------- basis <- c() for(i in c(0:(2^4-1))) basis[i+1] <- paste0("|", i %/% 2, ">|", i %% 2, ">") x <- H(1)*qstate(4, basis=basis) c <- 1 bits <- c(2:4) z <- cadd(c=c, bits=bits, x=x, y=5) z z <- cadd(c=c, bits=bits, x=z, y=2) z z <- cadd(c=c, bits=bits, x=z, y=8) z ## ----------------------------------------------------------------------------- mult <- function(reg1, reg2, x, y, swap=TRUE) { stopifnot(length(reg1) == length(reg2)) n <- length(reg2) s <- summands(y, 2^n, n) for(i in c(1:n)) { x <- cadd(c=reg1[i], bits=reg2, x=x, y=s[i]) } if(swap) { for(i in c(1:n)) { x <- SWAP(c(reg1[i], reg2[i])) * x } } return(invisible(x)) } ## ----------------------------------------------------------------------------- basis <- c() for(i in c(0:(2^3-1))) { for(j in c(0:(2^3-1))) { basis[i*2^3+j + 1] <- paste0("|", i, ">|", j, ">") } } x <- X(2)*qstate(6, basis=basis) x reg1 <- c(1:3) reg2 <- c(4:6) z <- mult(reg1, reg2, x=x, y=3) z <- X(5) * z z z <- mult(reg1, reg2, x=z, y=3) z ## ----------------------------------------------------------------------------- eEa <- function(a, b) { if(a == 0) return(c(b, 0, 1)) res <- eEa(b %% a, a) return(c(res[1], res[3] - (b %/% a) * res[2], res[2])) } moduloinverse <- function(a, n) { res <- eEa(a=a, b=n) if(res[1] != 1) stop("inverse does not exist!") return(res[2] %% n) } ## ----------------------------------------------------------------------------- cis.less <- function(c, bits, x, c1, a, y) { ## add ancilla bit as most significant bit to bits b <- c(bits, a) n <- length(b) ## cadd works modulo 2^n z <- cadd(c=c, bits=b, x=x, y=2^n-y) ## 'copy' overflow bit z <- CNOT(c(a, c1)) * z ## add back, resetting ancilla a to |0> z <- cadd(c=c, bits=b, x=z, y=y) return(z) } ## ----------------------------------------------------------------------------- basis <- c() for(i in c(0:(2^6-1))) { basis[i + 1] <- paste0("|", i %/% 8 ,">|a=", (i %/% 4) %% 2, ">|c1=", (i%/%2) %% 2, ">|c=", i%%2, ">") } x <- H(1)*qstate(6, basis=basis) z <- cadd(c=1, bits=c(4,5,6), x=x, y=5) z ## 5 < 7 -> c1 = 1 v <- cis.less(c=1, bits=c(4,5,6), x=z, c1=2, a=3, y=7) v ## 5 > 3 -> c1 = 0 w <- cis.less(c=1, bits=c(4,5,6), x=z, c1=2, a=3, y=3) w ## 5 < 9 -> c1 = 1 w <- cis.less(c=1, bits=c(4,5,6), x=z, c1=2, a=3, y=9) w ## ----------------------------------------------------------------------------- caddmodN <- function(c, bits, c1, c2, a, x, y, N) { stopifnot(length(a) == 1 && length(c1) == 1 && length(c2) == 1 && length(unique(c(c1, c2, a))) == 3) y <- y %% N ## set c1=1 if x < N z <- cis.less(c=c, bits=bits, x=x, c1=c1, a=a, y=N) ## set c2=1 if x < N - y z <- cis.less(c=c, bits=bits, x=z, c1=c2, a=a, y=N-y) ## if c1 and not c2, x = x + y - N z <- X(c2) *( CCNOT(c(c1, c2, a)) * (X(c2) * z)) z <- cadd(c=a, bits=bits, x=z, y=y - N) z <- X(c2) * (CCNOT(c(c1, c2, a)) * (X(c2) * z)) ## if c1 and c2 add x = x + y z <- CCNOT(c(c1, c2, a)) * z z <- cadd(c=a, bits=bits, x=z, y=y) z <- CCNOT(c(c1, c2, a)) * z ## reset c1,2 z <- cis.less(c=c, bits=bits, x=z, c1=c2, a=a, y=y) z <- CNOT(c(c1, c2)) * z z <- cis.less(c=c, bits=bits, x=z, c1=c1, a=a, y=N) return(invisible(z)) } ## ----------------------------------------------------------------------------- basis <- c() for(i in c(0:(2^7-1))) { basis[i + 1] <- paste0("|", i %/% 16 , ">|a=", (i %/% 8) %% 2, ">|c2=", (i %/% 4) %% 2, ">|c1=", (i%/%2) %% 2, ">|c=", i%%2, ">") } x <- X(1)*qstate(7, basis=basis) x bits <- c(5,6,7) c <- 1 c1 <- 2 c2 <- 3 a <- 4 N <- 5 z <- caddmodN(c=c, bits=bits, c1=c1, c2=c2, a=a, x=x, y=3, N=N) # 0 + 3 mod 5 z z <- caddmodN(c=c, bits=bits, c1=c1, c2=c2, a=a, x=z, y=1, N=N) # 3 + 1 mod 5 z z <- caddmodN(c=c, bits=bits, c1=c1, c2=c2, a=a, x=z, y=6, N=N) # 4 + 6 mod 5 z ## ----------------------------------------------------------------------------- cmultmodN <- function(c, reg1, reg2, ancillas, x, y, N) { stopifnot(length(reg1) == length(reg2)) ## need 4 ancilla registers stopifnot(length(ancillas) == 4 && length(unique(ancillas)) == 4) n <- length(reg2) ## precompute terms in the sum s <- summands(y, N, n) ## start with |x>|0> for(i in c(1:n)) { x <- CCNOT(c(c, reg1[i], ancillas[4])) * x x <- caddmodN(c=ancillas[4], bits=reg2, c1=ancillas[1], c2=ancillas[2], a=ancillas[3], x=x, y=s[i], N=N) x <- CCNOT(c(c, reg1[i], ancillas[4])) * x } ## now |x>|xy mod N> for(i in c(1:n)) { x <- CSWAP(c(c, reg1[i], reg2[i])) * x } ## now |xy mod N>|x> ## -y_inv mod N yinv <- N - moduloinverse(a=y, n=N) s <- summands(yinv, N, n) for(i in c(1:n)) { x <- CCNOT(c(c, reg1[i], ancillas[4])) * x x <- caddmodN(c=ancillas[4], bits=reg2, c1=ancillas[1], c2=ancillas[2], a=ancillas[3], x=x, y=s[i], N=N) x <- CCNOT(c(c, reg1[i], ancillas[4])) * x } ## finally |xy mod N>|0> return(invisible(x)) } ## ----------------------------------------------------------------------------- basis <- c() for(i in c(0:(2^11-1))) { basis[i + 1] <- paste0("|reg1=", i %/% (32*2^3) , ">|reg2=", (i %/% 32) %% 2^3 , "|anc=", (i %/% 16) %% 2, (i %/% 8) %% 2, (i %/% 4) %% 2, (i%/%2) %% 2, ">|c=", i%%2, ">") } x <- CNOT(c(1,10)) * (H(1)*qstate(11, basis=basis)) x c <- 1 ancillas <- c(2:5) reg2 <- c(6:8) reg1 <- c(9:11) N <- 5 z <- cmultmodN(c=c, reg1=reg1, reg2=reg2, ancillas=ancillas, x=x, y=3, N=N) z z <- cmultmodN(c=c, reg1=reg1, reg2=reg2, ancillas=ancillas, x=z, y=3, N=N) z z <- cmultmodN(c=c, reg1=reg1, reg2=reg2, ancillas=ancillas, x=z, y=3, N=N) z z <- cmultmodN(c=c, reg1=reg1, reg2=reg2, ancillas=ancillas, x=z, y=3, N=N) z ## ----------------------------------------------------------------------------- cexpomodN <- function(c, reg1, reg2, ancillas, x, y, a, N) { stopifnot(length(reg1) == length(reg2)) ## need 4 ancilla registers stopifnot(length(ancillas) == 4 && length(unique(ancillas)) == 4) for(i in c(1:a)) { x <- cmultmodN(c=c, reg1=reg1, reg2=reg2, ancillas=ancillas, x=x, y=y, N=N) } return(invisible(x)) } ## ----------------------------------------------------------------------------- x <- CNOT(c(1,10)) * (H(1)*qstate(11, basis=basis)) x x <- cexpomodN(c, reg1, reg2, ancillas, x, y=3, a=4, N) x ## ----------------------------------------------------------------------------- cexpomodN2 <- function(c, reg1, reg2, ancillas, x, y, a, N) { stopifnot(length(reg1) == length(reg2)) ## need 4 ancilla registers stopifnot(length(ancillas) == 4 && length(unique(ancillas)) == 4) ab <- as.integer(intToBits(a)) n <- max(which(ab == 1)) y2 <- y %% N for(i in c(1:n)) { if(ab[i] == 1) { x <- cmultmodN(c=c, reg1=reg1, reg2=reg2, ancillas=ancillas, x=x, y=y2, N=N) } y2 <- ((y2%%N) * (y2%%N)) %% N # y2=y^(2^i) mod N } return(invisible(x)) } ## ----------------------------------------------------------------------------- x <- CNOT(c(1,10)) * (H(1)*qstate(11, basis=basis)) x x <- cexpomodN2(c, reg1, reg2, ancillas, x, y=3, a=4, N) x