## ----------------------------------------------------------------------------- library(pleLMA) ## ----------------------------------------------------------------------------- data(dass) ## ----eval=FALSE--------------------------------------------------------------- # ?dass ## ----------------------------------------------------------------------------- data(dass) items.to.use <- c("d1","d2","d3","a1","a2","a3","s1","s2","s3") inData <- dass[1:250,(items.to.use)] head(inData) ## ----------------------------------------------------------------------------- #--- Log-linear model of Independence ind <- ple.lma(inData, model.type="independence") ## ----------------------------------------------------------------------------- (inTraitAdj <- matrix(1, nrow=1 ,ncol=1)) ## ----------------------------------------------------------------------------- (inItemTraitAdj <- matrix(1, nrow=ncol(inData), ncol=1) ) ## ----------------------------------------------------------------------------- #--- Model in the rasch family r1 <- ple.lma(inData, model.type="rasch", inItemTraitAdj, inTraitAdj) ## ----------------------------------------------------------------------------- #--- Generalized partial credit model g1 <- ple.lma(inData, model.type="gpcm", inItemTraitAdj, inTraitAdj) ## ----------------------------------------------------------------------------- #--- Nominal response model n1 <- ple.lma(inData, model.type="nominal", inItemTraitAdj, inTraitAdj) ## ----------------------------------------------------------------------------- xj <- matrix(c(0, 1, 2, 5), nrow=9, ncol=4, byrow=TRUE) g1b <- ple.lma(inData, inItemTraitAdj, inTraitAdj, model.type="gpcm", starting.sv=xj) ## ----------------------------------------------------------------------------- n1$estimates sv <- n1$estimates[, 6:9] sigma <- n1$Phi.mat n1.alt <- ple.lma(inData, model.type="nominal", inItemTraitAdj, inTraitAdj, starting.sv = sv, starting.phi= sigma) ## ----eval=FALSE--------------------------------------------------------------- # n1.summary <- lma.summary(n1) ## ----------------------------------------------------------------------------- noquote(lma.summary(n1)$report) ## ----------------------------------------------------------------------------- lma.summary(n1)$TraitByTrait lma.summary(n1)$ItemByTrait ## ----------------------------------------------------------------------------- #--- item by log likelihoods, lambdas, and nus lma.summary(n1)$estimates #--- sigma_1^2 lma.summary(n1)$phi ## ----------------------------------------------------------------------------- g1$estimates ## ----eval=FALSE--------------------------------------------------------------- # n1$item.log[[1]] ## ----eval=FALSE--------------------------------------------------------------- # iterationPlot(n1) ## ----eval=FALSE--------------------------------------------------------------- # s <- set.up(inData, model.type='nominal', inTraitAdj, inItemTraitAdj) # # convergence.stats(n1$item.log, n1$nitems, n1$nless, s$LambdaName, s$NuName) ## ----eval=FALSE--------------------------------------------------------------- # s <- set.up(inData, model.type='gpcm', inTraitAdj, inItemTraitAdj) # # convergenceGPCM(g1$item.log, g1$nitems, g1$ncat, g1$nless, s$LambdaName) ## ----eval=FALSE--------------------------------------------------------------- # scalingPlot(n1) ## ----------------------------------------------------------------------------- anchor <- matrix(0, nrow=1, ncol=9) anchor[1,1] <- 1 reScaleItem(n1, anchor=anchor) ## ----echo=TRUE, eval=FALSE---------------------------------------------------- # theta.r1 <- theta.estimates(inData, r1) # theta.g1 <- theta.estimates(inData, g1) # theta.n1 <- theta.estimates(inData, n1) ## ----------------------------------------------------------------------------- (inTraitAdj <- matrix(1, nrow=3 ,ncol=3)) ## ----------------------------------------------------------------------------- d <- matrix(c(1, 0, 0),nrow=3,ncol=3,byrow=TRUE) a <- matrix(c(0, 1, 0),nrow=3,ncol=3,byrow=TRUE) s <- matrix(c(0, 0, 1),nrow=3,ncol=3,byrow=TRUE) das <- list(d, a, s) (inItemTraitAdj <- rbind(das[[1]], das[[2]], das[[3]])) ## ----echo=TRUE, results='hide'------------------------------------------------ r3 <- ple.lma(inData, model.type="rasch", inItemTraitAdj, inTraitAdj) g3 <- ple.lma(inData, model.type="gpcm", inItemTraitAdj, inTraitAdj) n3 <- ple.lma(inData, model.type="nominal", inItemTraitAdj, inTraitAdj) ## ----------------------------------------------------------------------------- noquote(lma.summary(n3)$report) ## ----------------------------------------------------------------------------- n3$Phi.mat ## ----------------------------------------------------------------------------- # the full data set inData <- dass # A (3 x 3) trait by trait adjacency matrix inTraitAdj <- matrix(c(1,1,1, 1,1,1, 1,1,1), nrow=3 ,ncol=3) # A (42 x 3) item by trait adjacency matrix d <- matrix(c(1, 0, 0),nrow=14,ncol=3,byrow=TRUE) a <- matrix(c(0, 1, 0),nrow=13,ncol=3,byrow=TRUE) s <- matrix(c(0, 0, 1),nrow=15,ncol=3,byrow=TRUE) das <- list(d, a, s) inItemTraitAdj <- rbind(das[[1]], das[[2]], das[[3]]) ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # data(vocab) # inItemTraitAdj <- matrix(1, nrow=ncol(vocab), ncol=1) # inTraitAdj <- matrix(1, nrow=1, ncol=1) # ## ----eval=FALSE, echo=TRUE---------------------------------------------------- # #--- 2 pl as a gpcm model # g.2pl <- ple.lma(inData=vocab, model.type="gpcm", inItemTraitAdj, inTraitAdj, tol=1e-04) # # #--- 2 pl as a nominal model # n.2pl <- ple.lma(inData=vocab, model.type="nominal", inItemTraitAdj, inTraitAdj, tol=1e-04)