## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup, echo = FALSE------------------------------------------------------ library(pacta.multi.loanbook) plot_table <- function(table) { table_plot <- gt::gt(dplyr::select(table, -"dataset")) table_plot <- gt::cols_width( .data = table_plot, column ~ gt::px(150), typeof ~ gt::px(90) ) table_plot <- gt::tab_style( data = table_plot, style = gt::cell_text(size = "smaller"), locations = gt::cells_body(columns = 1:2) ) table_plot <- gt::tab_options( data = table_plot, ihtml.active = TRUE, ihtml.use_pagination = FALSE, ihtml.use_sorting = TRUE, ihtml.use_highlight = TRUE ) gt::fmt_passthrough(table_plot) } ## ----dd_lbk_match_success_rate, results = FALSE------------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "lbk_match_success_rate") ## ----dd_lbk_match_success_rate_table, echo = FALSE---------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "lbk_match_success_rate") plot_table(table) ## ----dd_summary_statistics_loanbook_coverage, results = FALSE----------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "summary_statistics_loanbook_coverage") ## ----dd_summary_statistics_loanbook_coverage_table, echo = FALSE-------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "summary_statistics_loanbook_coverage") plot_table(table) ## ----dd_lost_companies_sector_split, results = FALSE-------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "lost_companies_sector_split") ## ----dd_lost_companies_sector_split_table, echo = FALSE----------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "lost_companies_sector_split") plot_table(table) ## ----dd_tms_results, results = FALSE------------------------------------------ dplyr::filter(data_dictionary, .data[["dataset"]] == "tms_results") ## ----dd_tms_results_table, echo = FALSE--------------------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "tms_results") plot_table(table) ## ----dd_sda_results, results = FALSE------------------------------------------ dplyr::filter(data_dictionary, .data[["dataset"]] == "sda_results") ## ----dd_sda_results_table, echo = FALSE--------------------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "sda_results") plot_table(table) ## ----dd_data_tech_mix, results = FALSE---------------------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_tech_mix") ## ----dd_data_tech_mix_table, echo = FALSE------------------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_tech_mix") plot_table(table) ## ----dd_data_trajectory, results = FALSE-------------------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_trajectory") ## ----dd_data_trajectory_table, echo = FALSE----------------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_trajectory") plot_table(table) ## ----dd_data_emission_intensity, results = FALSE------------------------------ dplyr::filter(data_dictionary, .data[["dataset"]] == "data_emission_intensity") ## ----dd_data_emission_intensity_table, echo = FALSE--------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_emission_intensity") plot_table(table) ## ----dd_companies_included, results = FALSE----------------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "companies_included") ## ----dd_companies_included_table, echo = FALSE-------------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "companies_included") plot_table(table) ## ----dd_company_technology_deviation_tms, results = FALSE--------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_technology_deviation_tms") ## ----dd_company_technology_deviation_tms_table, echo = FALSE------------------ table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_technology_deviation_tms") plot_table(table) ## ----dd_company_alignment_net_tms, results = FALSE---------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_alignment_net_tms") ## ----dd_company_alignment_net_tms_table, echo = FALSE------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_alignment_net_tms") plot_table(table) ## ----dd_company_alignment_bo_po_tms, results = FALSE-------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_alignment_bo_po_tms") ## ----dd_company_alignment_bo_po_tms_table, echo = FALSE----------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_alignment_bo_po_tms") plot_table(table) ## ----dd_company_alignment_net_sda, results = FALSE---------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_alignment_net_sda") ## ----dd_company_alignment_net_sda_table, echo = FALSE------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_alignment_net_sda") plot_table(table) ## ----dd_company_exposure_net_aggregate_alignment, results = FALSE------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_exposure_net_aggregate_alignment") ## ----dd_company_exposure_net_aggregate_alignment_table, echo = FALSE---------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_exposure_net_aggregate_alignment") plot_table(table) ## ----dd_company_exposure_bo_po_aggregate_alignment, results = FALSE----------- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_exposure_bo_po_aggregate_alignment") ## ----dd_company_exposure_bo_po_aggregate_alignment_table, echo = FALSE-------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "company_exposure_bo_po_aggregate_alignment") plot_table(table) ## ----dd_loanbook_exposure_net_aggregate_alignment, results = FALSE------------ dplyr::filter(data_dictionary, .data[["dataset"]] == "loanbook_exposure_net_aggregate_alignment") ## ----dd_loanbook_exposure_net_aggregate_alignment_table, echo = FALSE--------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "loanbook_exposure_net_aggregate_alignment") plot_table(table) ## ----dd_loanbook_exposure_bo_po_aggregate_alignment, results = FALSE---------- dplyr::filter(data_dictionary, .data[["dataset"]] == "loanbook_exposure_bo_po_aggregate_alignment") ## ----dd_loanbook_exposure_bo_po_aggregate_alignment_table, echo = FALSE------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "loanbook_exposure_bo_po_aggregate_alignment") plot_table(table) ## ----dd_data_sankey, results = FALSE------------------------------------------ dplyr::filter(data_dictionary, .data[["dataset"]] == "data_sankey") ## ----dd_data_sankey_table, echo = FALSE--------------------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_sankey") plot_table(table) ## ----dd_data_scatter_alignment_exposure, results = FALSE---------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_scatter_alignment_exposure") ## ----dd_data_scatter_alignment_exposure_table, echo = FALSE------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_scatter_alignment_exposure") plot_table(table) ## ----dd_data_scatter_sector, results = FALSE---------------------------------- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_scatter_sector") ## ----dd_data_scatter_sector_table, echo = FALSE------------------------------- table <- dplyr::filter(data_dictionary, .data[["dataset"]] == "data_scatter_sector") plot_table(table)