## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library("ordinalbayes") ## ----------------------------------------------------------------------------- head(cesc) ## ----args--------------------------------------------------------------------- args(ordinalbayes) ## ----model-------------------------------------------------------------------- fit<-ordinalbayes(Stage~cigarettes_per_day+age_at_index, data=cesc,x=cesc[, 5:45], model="regressvi", gamma.ind="fixed", pi.fixed=0.05, adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----lasso, eval=FALSE-------------------------------------------------------- # fit.lasso<-ordinalbayes(Stage~cigarettes_per_day+age_at_index, data=cesc,x=cesc[, 5:45], model="lasso", adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----rvifixed, eval=FALSE----------------------------------------------------- # fit.regressvi.fixed<-ordinalbayes(Stage~1, data=cesc,x=cesc[, 5:45], model="regressvi", gamma.ind="fixed", pi.fixed=0.05, adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----rvirandom, eval=FALSE---------------------------------------------------- # fit.regressvi.random<-ordinalbayes(Stage~1, data=cesc,x=cesc[, 5:45], model="regressvi", gamma.ind="random", c.gamma=0.01, d.gamma=0.19, adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----nssfixed, eval=FALSE----------------------------------------------------- # fit.normalss.fixed<-ordinalbayes(Stage~1, data=cesc,x=cesc[, 5:45], model="normalss", gamma.ind="fixed", pi.fixed = 0.05, sigma2.0=0.01, sigma2.1=10, adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----nssrandom, eval=FALSE---------------------------------------------------- # fitted.normalss.random<-ordinalbayes(Stage~1, data=cesc,x=cesc[, 5:45], model="normalss", gamma.ind="random", c.gamma = 0.01, d.gamma=0.19, sigma2.0=0.01, sigma2.1=10, adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----dessfixed, eval=FALSE---------------------------------------------------- # fit.dess.fixed<-ordinalbayes(Stage~1, data=cesc,x=cesc[, 5:45], model="dess", gamma.ind="fixed", pi.fixed = 0.05, lambda0=20, adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----dessrandom, eval=FALSE--------------------------------------------------- # fit.dess.random<-ordinalbayes(Stage~1, data=cesc,x=cesc[, 5:45], model="dess", gamma.ind="random", c.gamma = 0.01, d.gamma=0.19, lambda0=20, adaptSteps=500, burnInSteps=500, numSavedSteps=999) ## ----print-------------------------------------------------------------------- print(fit) ## ----summary------------------------------------------------------------------ summary.fit<-summary(fit) names(summary.fit) head(summary.fit$gammamatrix) ## ----usesummary--------------------------------------------------------------- names(which(summary.fit$Beta.BayesFactor>5)) ## ----usesummary2-------------------------------------------------------------- names(which(summary.fit$gamma.BayesFactor>5)) ## ----usesummary3-------------------------------------------------------------- names(which(summary.fit$gammamean>0.5)) ## ----coef--------------------------------------------------------------------- coefficients<-coef(fit) coefficients$gamma[which(summary.fit$gamma.BayesFactor>5)] coefficients$gamma[which(summary.fit$Beta.BayesFactor>5)] ## ----pred--------------------------------------------------------------------- phat<-predict(fit) table(phat$class, cesc$Stage) ## ----plot, eval=FALSE--------------------------------------------------------- # plot(fit)