## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(musclesyneRgies) ## ---- message = FALSE, results = "hide", fig.width = 7, fig.asp = 0.9--------- # Load the built-in example data set data("RAW_DATA") # Raw EMG can be plotted with the following (the first three seconds are plot by default) pp <- plot_rawEMG( RAW_DATA[[1]], trial = names(RAW_DATA)[1], row_number = 4, col_number = 4, line_col = "tomato3" ) ## ---- message = FALSE, results = "hide", fig.width = 7, fig.asp = 0.9--------- # Filter... filtered_EMG <- lapply(RAW_DATA, function(x) filtEMG(x)) # ...and normalise raw EMG norm_EMG <- lapply( filtered_EMG, function(x) { normEMG(x, trim = TRUE, cy_max = 3, cycle_div = c(100, 100) ) } ) # The filtered and time-normalised EMG can be plotted with the following pp <- plot_meanEMG( norm_EMG[[1]], trial = names(norm_EMG)[1], row_number = 4, col_number = 4, line_size = 0.8, line_col = "tomato3" ) ## ---- message = FALSE, results = "hide", fig.width = 6, fig.asp = 1----------- # Extract synergies via NMF SYNS <- lapply(norm_EMG, synsNMF) # The extracted synergies can be plotted with the following pp <- plot_syn_trials(SYNS[[1]], max_syns = max(unlist(lapply(SYNS, function(x) x$syns))), trial = names(SYNS)[1], line_size = 0.8, line_col = "tomato1", sd_col = "tomato4" ) ## ---- message = FALSE, results = "hide", fig.width = 5, fig.asp = 0.7--------- # Load synergies data("SYNS") # Classify with k-means # A plot of FWHM vs. CoA of the classified synergies appears by default # This should help the user to identify potential malfunctions in the clustering SYNS_classified <- classify_kmeans(SYNS) ## ---- message = FALSE, results = "hide", fig.width = 6, fig.asp = 1----------- # Classified synergies can be finally plotted with pp <- plot_classified_syns(SYNS_classified, line_col = "tomato1", sd_col = "tomato4", condition = "TW" ) # "TW" = Treadmill Walking, change with your own ## ---- message = FALSE, results = "hide", fig.width = 5, fig.asp = 1.4--------- pp <- plot_classified_syns_UMAP( SYNS_classified, condition = "TW" )