## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(musclesyneRgies) ## ---- results = "hide", fig.width = 4, fig.asp = 1---------------------------- # Load a typical motor primitive of 30 cycles (from locomotion) data("primitive") # Reduce primitive to the first cycle prim_sub <- primitive$signal[1:which(primitive$time == max(primitive$time))[1]] # Calculate FWHM of the first cycle prim_sub_FWHM <- FWHM(prim_sub) # Calculate CoA of the first cycle prim_sub_CoA <- CoA(prim_sub) # Half maximum (for the plots) hm <- min(prim_sub) + (max(prim_sub) - min(prim_sub)) / 2 hm_plot <- prim_sub hm_plot[which(hm_plot > hm)] <- hm hm_plot[which(hm_plot < hm)] <- NA # Plots plot(prim_sub, ty = "l", xlab = "Time", ylab = "Amplitude") lines(hm_plot, lwd = 3, col = 2) # FWHM (horizontal, in red) graphics::abline(v = prim_sub_CoA, lwd = 3, col = 4) # CoA (vertical, in blue) ## ---- results = "hide"-------------------------------------------------------- prim <- primitive$signal # Calculate the local complexity or Higuchi's fractal dimension (HFD) nonlin_HFD <- HFD(prim)$Higuchi # Calculate the local complexity or Hurst exponent (H) nonlin_H <- Hurst(prim, min_win = max(primitive$time))$Hurst message("Higuchi's fractal dimension: ", round(nonlin_HFD, 3)) message("Hurst exponent: ", round(nonlin_H, 3))