## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load-data, message=FALSE------------------------------------------------- # Install from CRAN # install.packages("mumarinex") # run the first time only # Load the package library(mumarinex) ## ----------------------------------------------------------------------------- # Load example dataset data("Simulated_data") # Display the first rows head(Simulated_data) # Definition of the reference position ref_idx <- 41:50 # row number of the reference samples ## ----------------------------------------------------------------------------- # Compute MUMARINEX and sub-indices rMUM <- mumarinex(x = Simulated_data, ref = ref_idx, subindices = TRUE) # Extract MUMARINEX rMUMARINEX<-rMUM$MUMARINEX # Extract sub-indices Subind<-rMUM$Subindices ## ----fig.width=7, fig.height=5------------------------------------------------ stations<-matrix(unlist(strsplit(rownames(Simulated_data),".",fixed=TRUE)),ncol=2,byrow=TRUE)[,1] # get station labels from data rownames stations<-factor(stations,levels=unique(stations)) # setting station names as factor to specify in which order it must display it in the boxplot boxplot(rMUMARINEX~stations,ylim=c(0,1)) # ylim is set in the interval 0-1 as it is the maximum range of MUMARINEX ## ----fig.width=10, fig.height=5----------------------------------------------- decomplot(x = Simulated_data, g = stations, ref = ref_idx, main = "Artificial data") ## ----------------------------------------------------------------------------- diagnostic_tool(x = Simulated_data, g = stations, ref = ref_idx)