## ----include = FALSE---------------------------------------------------------- EVAL_DEFAULT <- FALSE knitr::opts_chunk$set( collapse = TRUE, comment = "#>", eval = EVAL_DEFAULT ) ## ----setup-------------------------------------------------------------------- # library(modsem) ## ----------------------------------------------------------------------------- # tpb_uk <- " # # Outer Model (Based on Hagger et al., 2007) # ATT =~ att3 + att2 + att1 + att4 # SN =~ sn4 + sn2 + sn3 + sn1 # PBC =~ pbc2 + pbc1 + pbc3 + pbc4 # INT =~ int2 + int1 + int3 + int4 # BEH =~ beh3 + beh2 + beh1 + beh4 # # # Inner Model (Based on Steinmetz et al., 2011) # INT ~ ATT + SN + PBC # BEH ~ INT + PBC # BEH ~ INT:PBC # " # # fit <- modsem(tpb_uk, # data = TPB_UK, # method = "lms", # nodes = 32, # Number of nodes for numerical integration # adaptive.quad = TRUE, # Use quasi-adaptive quadrature # adaptive.frequency = 3, # Update the quasi-adaptive quadrature every third EM-iteration # algorithm ="EMA", # Use accelerated EM algorithm (Default) # convergence.abs = 1e-4, # Relative convergence criterion # convergence.rel = 1e-10, # Relative convergence criterion # max.iter = 500, # Maximum number of iterations # max.step = 1) # Maximum number of steps in the maximization step # summary(fit)