--- title: "Overview of Vignettes" output: rmarkdown::html_vignette: vignette: > %\VignetteIndexEntry{Overview of Vignettes} \usepackage[utf8]{inputenc} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console --- ```{r message=FALSE, warning=FALSE, include=FALSE} library(knitr) knitr::opts_chunk$set( echo = TRUE, collapse = TRUE, warning = FALSE, message = FALSE, comment = "#>", eval = TRUE ) ``` All package vignettes are available at [https://easystats.github.io/modelbased/](https://easystats.github.io/modelbased/). ## Function Overview * [Function Documentation](https://easystats.github.io/modelbased/reference/index.html) ## Introductions ### Basics * [Data grids](https://easystats.github.io/modelbased/articles/visualisation_matrix.html) * [What are, why use and how to get marginal means](https://easystats.github.io/modelbased/articles/estimate_means.html) * [Contrast analysis](https://easystats.github.io/modelbased/articles/estimate_contrasts.html) * [Marginal effects and derivatives](https://easystats.github.io/modelbased/articles/estimate_slopes.html) ### Interpretation * [Use a model to make predictions](https://easystats.github.io/modelbased/articles/estimate_response.html) * [Interpret simple and complex models using the power of Effect Derivatives](https://easystats.github.io/modelbased/articles/derivatives.html) * [How to use Mixed models to Estimate Individuals' Scores](https://easystats.github.io/modelbased/articles/estimate_grouplevel.html) ### Visualization * [Visualize effects and interactions](https://easystats.github.io/modelbased/articles/estimate_relation.html) * [The Modelisation Approach to Statistics](https://easystats.github.io/modelbased/articles/modelisation_approach.html) ## Case Studies ### Workflows * [Understanding your models](https://easystats.github.io/modelbased/articles/workflow_modelbased.html) * [Causal inference for observational data](https://easystats.github.io/modelbased/articles/practical_causality.html) * [Intersectionality analysis using the MAIHDA framework](https://easystats.github.io/modelbased/articles/practical_intersectionality.html) ### Contrasts * [Contrasts and pairwise comparisons](https://easystats.github.io/modelbased/articles/introduction_comparisons_1.html) * [Slopes, floodlight and spotlight analysis (Johnson-Neyman intervals)](https://easystats.github.io/modelbased/articles/introduction_comparisons_2.html) * [Contrasts and comparisons for generalized linear models](https://easystats.github.io/modelbased/articles/introduction_comparisons_3.html) * [Contrasts and comparisons for zero-inflation models](https://easystats.github.io/modelbased/articles/introduction_comparisons_4.html)