## ----------------------------------------------------------------------------- library(mobsim) sim_n_high <- sim_thomas_community(s_pool = 200, n_sim = 20000, sad_type = "poilog", sad_coef = list("cv_abund" = 1), sigma = 0.02) sim_n_low <- sim_thomas_community(s_pool = 200, n_sim = 10000, sad_type = "poilog", sad_coef = list("cv_abund" = 1), sigma = 0.02) ## ----------------------------------------------------------------------------- summary(sim_n_high) summary(sim_n_low) ## ----fig.width=7.2, fig.height=4.1-------------------------------------------- oldpar <- par(mfrow = c(1,2)) plot(sim_n_high) plot(sim_n_low) par(oldpar) ## ----------------------------------------------------------------------------- area <- c(0.001,0.002,0.005,0.01,0.02,0.05,0.1,0.2,0.5,1.0) sar_n_high <- divar(sim_n_high, prop_area = area) sar_n_low <- divar(sim_n_low, prop_area = area) ## ----fig.width=5, fig.height=5------------------------------------------------ names(sar_n_high) plot(m_species ~ prop_area, data = sar_n_high, type = "b", log = "xy", ylim = c(2,200), xlab = "Proportion of area sampled.", ylab = "No. of species", main = "Species-area relationship") lines(m_species ~ prop_area, data = sar_n_low, type = "b", col = "red") legend("bottomright",c("N high","N low"), col = 1:2, pch = 1) ## ----fig.width=7.2, fig.height=4.1-------------------------------------------- oldpar <- par(mfrow = c(1,2)) samples_S_n_high <- sample_quadrats(sim_n_high, n_quadrats = 100, quadrat_area = 0.001, method = "random", avoid_overlap = TRUE) samples_S_n_low <- sample_quadrats(sim_n_low, n_quadrats = 100, quadrat_area = 0.001, method = "random", avoid_overlap = TRUE) par(oldpar) ## ----fig.width=7.2, fig.height=4.1-------------------------------------------- oldpar <- par(mfrow = c(1,2)) samples_L_n_high <- sample_quadrats(sim_n_high, n_quadrats = 10, quadrat_area = 0.01, method = "random", avoid_overlap = TRUE) samples_L_n_low <- sample_quadrats(sim_n_low, n_quadrats = 10, quadrat_area = 0.01, method = "random", avoid_overlap = TRUE) par(oldpar) ## ----------------------------------------------------------------------------- dim(samples_L_n_high$spec_dat) head(samples_L_n_high$spec_dat)[,1:5] dim(samples_L_n_high$xy_dat) head(samples_L_n_high$xy_dat) ## ----message=F---------------------------------------------------------------- library(vegan) S_n_high <- specnumber(samples_S_n_high$spec_dat) S_n_low <- specnumber(samples_S_n_low$spec_dat) Shannon_n_high <- diversity(samples_S_n_high$spec_dat, index = "shannon") Shannon_n_low <- diversity(samples_S_n_low$spec_dat, index = "shannon") Simpson_n_high <- diversity(samples_S_n_high$spec_dat, index = "simpson") Simpson_n_low <- diversity(samples_S_n_low$spec_dat, index = "simpson") ## ----------------------------------------------------------------------------- div_dat_S <- data.frame(N = rep(c("N high","N low"), each = length(S_n_high)), S = c(S_n_high, S_n_low), Shannon = c(Shannon_n_high, Shannon_n_low), Simpson = c(Simpson_n_high, Simpson_n_low)) ## ----fig.width=7.2, fig.height=3.1-------------------------------------------- oldpar <- par(mfrow = c(1,3)) boxplot(S ~ N, data = div_dat_S, ylab = "Species richness") boxplot(Shannon ~ N, data = div_dat_S, ylab = "Shannon diversity") boxplot(Simpson ~ N, data = div_dat_S, ylab = "Simpson diversity") par(oldpar) ## ----------------------------------------------------------------------------- mean_div_S <- aggregate(div_dat_S[,2:4], by = list(div_dat_S$N), FUN = mean) mean_div_S ## ----------------------------------------------------------------------------- relEff_S <- (mean_div_S[mean_div_S$Group.1 == "N low", 2:4] - mean_div_S[mean_div_S$Group.1 == "N high", 2:4])/ mean_div_S[mean_div_S$Group.1 == "N high", 2:4] relEff_S ## ----------------------------------------------------------------------------- S_n_high <- specnumber(samples_L_n_high$spec_dat) S_n_low <- specnumber(samples_L_n_low$spec_dat) Shannon_n_high <- diversity(samples_L_n_high$spec_dat, index = "shannon") Shannon_n_low <- diversity(samples_L_n_low$spec_dat, index = "shannon") Simpson_n_high <- diversity(samples_L_n_high$spec_dat, index = "simpson") Simpson_n_low <- diversity(samples_L_n_low$spec_dat, index = "simpson") ## ----------------------------------------------------------------------------- div_dat_L <- data.frame(N = rep(c("N high","N low"), each = length(S_n_high)), S = c(S_n_high, S_n_low), Shannon = c(Shannon_n_high, Shannon_n_low), Simpson = c(Simpson_n_high, Simpson_n_low)) ## ----fig.width=7.2, fig.height=3.1-------------------------------------------- oldpar <- par(mfrow = c(1,3)) boxplot(S ~ N, data = div_dat_L, ylab = "Species richness") boxplot(Shannon ~ N, data = div_dat_L, ylab = "Shannon diversity") boxplot(Simpson ~ N, data = div_dat_L, ylab = "Simpson diversity") par(oldpar) ## ----------------------------------------------------------------------------- mean_div_L <- aggregate(div_dat_L[,2:4], by = list(div_dat_L$N), FUN = mean) relEff_L <- (mean_div_L[mean_div_S$Group.1 == "N low", 2:4] - mean_div_L[mean_div_L$Group.1 == "N high", 2:4])/ mean_div_L[mean_div_S$Group.1 == "N high", 2:4] ## ----------------------------------------------------------------------------- relEff_S relEff_L