## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(mlr3) library(mlr3fairness) library(mlr3pipelines) task = tsk("adult_train") ## ----echo = FALSE------------------------------------------------------------- library(mlr3misc) dt = as.data.table(mlr_pipeops) knitr::kable(dt[map_lgl(dt$tags, function(x) "fairness" %in% x)][, c(1,7,8,9,10)]) ## ----------------------------------------------------------------------------- p1 = po("reweighing_wts") ## ----------------------------------------------------------------------------- t1 = p1$train(list(task))[[1]] ## ----------------------------------------------------------------------------- set.seed(4321) learner = lrn("classif.rpart", cp = 0.005) learner_rw = as_learner(po("reweighing_wts") %>>% learner) grd = benchmark_grid(list(task), list(learner, learner_rw), rsmp("cv", folds=3)) bmr = benchmark(grd) ## ----------------------------------------------------------------------------- bmr$aggregate(msrs(c("fairness.tpr", "fairness.acc"))) ## ----------------------------------------------------------------------------- fairness_accuracy_tradeoff(bmr, msr("fairness.tpr"))