## ----label = setup, include = FALSE---------------------------- knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE, widtht = 65) options(width = 65) ## -------------------------------------------------------------- library("mlogit") data("Mode", package="mlogit") Mo <- dfidx(Mode, choice = "choice", varying = 2:9) ## ----probit1--------------------------------------------------- p1 <- mlogit(choice ~ cost + time, Mo, seed = 20, R = 100, probit = TRUE) ## -------------------------------------------------------------- summary(p1) ## -------------------------------------------------------------- L1 <- matrix(0, 3, 3) L1[! upper.tri(L1)] <- c(1, coef(p1)[6:10]) ## -------------------------------------------------------------- L1 %*% t(L1) ## ----probit2--------------------------------------------------- p2 <- mlogit(choice ~ cost + time, Mo, seed = 21, R = 100, probit = TRUE) ## -------------------------------------------------------------- coef(p2) ## -------------------------------------------------------------- actShares <- tapply(Mo$choice, Mo$id2, mean) ## -------------------------------------------------------------- predShares <- apply(fitted(p1, outcome = FALSE), 2, mean) rbind(predShares, actShares) sum(predShares) ## -------------------------------------------------------------- Mo2 <- Mo Mo2[idx(Mo2, 2) == 'car', 'cost'] <- Mo2[idx(Mo2, 2) == 'car', 'cost'] * 2 newShares <- apply(predict(p1, newdata = Mo2), 2, mean) cbind(original = actShares, new = newShares, change = round((newShares - actShares) / actShares * 100))