## ----setup-------------------------------------------------------------------- # nolint start library(mlexperiments) library(mllrnrs) ## ----------------------------------------------------------------------------- library(mlbench) data("PimaIndiansDiabetes2") dataset <- PimaIndiansDiabetes2 |> data.table::as.data.table() |> na.omit() feature_cols <- colnames(dataset)[1:8] target_col <- "diabetes" ## ----------------------------------------------------------------------------- seed <- 123 if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) { # on cran ncores <- 2L } else { ncores <- ifelse( test = parallel::detectCores() > 4, yes = 4L, no = ifelse( test = parallel::detectCores() < 2L, yes = 1L, no = parallel::detectCores() ) ) } options("mlexperiments.bayesian.max_init" = 10L) options("mlexperiments.optim.xgb.nrounds" = 100L) options("mlexperiments.optim.xgb.early_stopping_rounds" = 10L) ## ----------------------------------------------------------------------------- data_split <- splitTools::partition( y = dataset[, get(target_col)], p = c(train = 0.7, test = 0.3), type = "stratified", seed = seed ) train_x <- model.matrix( ~ -1 + ., dataset[data_split$train, .SD, .SDcols = feature_cols] ) train_y <- as.integer(dataset[data_split$train, get(target_col)]) - 1L test_x <- model.matrix( ~ -1 + ., dataset[data_split$test, .SD, .SDcols = feature_cols] ) test_y <- as.integer(dataset[data_split$test, get(target_col)]) - 1L ## ----------------------------------------------------------------------------- fold_list <- splitTools::create_folds( y = train_y, k = 3, type = "stratified", seed = seed ) ## ----------------------------------------------------------------------------- # required learner arguments, not optimized learner_args <- list( objective = "binary:logistic", eval_metric = "logloss" ) # set arguments for predict function and performance metric, # required for mlexperiments::MLCrossValidation and # mlexperiments::MLNestedCV predict_args <- NULL performance_metric <- metric("auc") performance_metric_args <- list(positive = "1") return_models <- FALSE # required for grid search and initialization of bayesian optimization parameter_grid <- expand.grid( subsample = seq(0.6, 1, .2), colsample_bytree = seq(0.6, 1, .2), min_child_weight = seq(1, 5, 4), learning_rate = seq(0.1, 0.2, 0.1), max_depth = seq(1, 5, 4) ) # reduce to a maximum of 10 rows if (nrow(parameter_grid) > 10) { set.seed(123) sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE) parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows) } # required for bayesian optimization parameter_bounds <- list( subsample = c(0.2, 1), colsample_bytree = c(0.2, 1), min_child_weight = c(1L, 10L), learning_rate = c(0.1, 0.2), max_depth = c(1L, 10L) ) optim_args <- list( iters.n = ncores, kappa = 3.5, acq = "ucb" ) ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = mllrnrs::LearnerXgboost$new( metric_optimization_higher_better = FALSE ), strategy = "grid", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$learner_args <- learner_args tuner$split_type <- "stratified" tuner$set_data( x = train_x, y = train_y ) tuner_results_grid <- tuner$execute(k = 3) #> #> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%) #> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%) #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) head(tuner_results_grid) #> setting_id metric_optim_mean nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective #> 1: 1 0.4121967 34 0.6 0.8 5 0.2 1 binary:logistic #> 2: 2 0.3890956 57 1.0 0.8 5 0.1 5 binary:logistic #> 3: 3 0.3925308 100 0.8 0.8 5 0.1 1 binary:logistic #> 4: 4 0.4082505 34 0.6 0.8 5 0.2 5 binary:logistic #> 5: 5 0.3975907 36 1.0 0.8 1 0.1 5 binary:logistic #> 6: 6 0.3932451 66 0.8 0.8 5 0.1 5 binary:logistic #> eval_metric #> 1: logloss #> 2: logloss #> 3: logloss #> 4: logloss #> 5: logloss #> 6: logloss ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = mllrnrs::LearnerXgboost$new( metric_optimization_higher_better = FALSE ), strategy = "bayesian", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$parameter_bounds <- parameter_bounds tuner$learner_args <- learner_args tuner$optim_args <- optim_args tuner$split_type <- "stratified" tuner$set_data( x = train_x, y = train_y ) tuner_results_bayesian <- tuner$execute(k = 3) #> #> Registering parallel backend using 4 cores. head(tuner_results_bayesian) #> Epoch setting_id subsample colsample_bytree min_child_weight learning_rate max_depth gpUtility acqOptimum inBounds Elapsed #> 1: 0 1 0.6 0.8 5 0.2 1 NA FALSE TRUE 1.695 #> 2: 0 2 1.0 0.8 5 0.1 5 NA FALSE TRUE 1.702 #> 3: 0 3 0.8 0.8 5 0.1 1 NA FALSE TRUE 1.734 #> 4: 0 4 0.6 0.8 5 0.2 5 NA FALSE TRUE 1.724 #> 5: 0 5 1.0 0.8 1 0.1 5 NA FALSE TRUE 0.849 #> 6: 0 6 0.8 0.8 5 0.1 5 NA FALSE TRUE 0.850 #> Score metric_optim_mean nrounds errorMessage objective eval_metric #> 1: -0.4089735 0.4089735 56 NA binary:logistic logloss #> 2: -0.3970937 0.3970937 49 NA binary:logistic logloss #> 3: -0.4013240 0.4013240 100 NA binary:logistic logloss #> 4: -0.4070968 0.4070968 69 NA binary:logistic logloss #> 5: -0.3819756 0.3819756 39 NA binary:logistic logloss #> 6: -0.3987643 0.3987643 99 NA binary:logistic logloss ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLCrossValidation$new( learner = mllrnrs::LearnerXgboost$new( metric_optimization_higher_better = FALSE ), fold_list = fold_list, ncores = ncores, seed = seed ) validator$learner_args <- tuner$results$best.setting[-1] validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> CV fold: Fold2 #> #> CV fold: Fold3 head(validator_results) #> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric #> 1: Fold1 0.8799577 1 0.8 1 0.1 5 39 binary:logistic logloss #> 2: Fold2 0.8635643 1 0.8 1 0.1 5 39 binary:logistic logloss #> 3: Fold3 0.9027699 1 0.8 1 0.1 5 39 binary:logistic logloss ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = mllrnrs::LearnerXgboost$new( metric_optimization_higher_better = FALSE ), strategy = "grid", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = seed ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) #> CV fold: Fold2 #> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%) #> #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) #> CV fold: Fold3 #> CV progress [========================================================================================================] 3/3 (100%) #> #> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%) #> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%) #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) head(validator_results) #> fold performance nrounds subsample colsample_bytree min_child_weight learning_rate max_depth objective eval_metric #> 1: Fold1 0.8675304 40 0.6 1 1 0.2 1 binary:logistic logloss #> 2: Fold2 0.8635643 44 1.0 1 5 0.1 5 binary:logistic logloss #> 3: Fold3 0.8793103 24 0.6 1 1 0.2 1 binary:logistic logloss ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = mllrnrs::LearnerXgboost$new( metric_optimization_higher_better = FALSE ), strategy = "bayesian", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = seed ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$parameter_bounds <- parameter_bounds validator$optim_args <- optim_args validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- TRUE validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold2 #> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%) #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold3 #> CV progress [========================================================================================================] 3/3 (100%) #> #> Registering parallel backend using 4 cores. head(validator_results) #> fold performance subsample colsample_bytree min_child_weight learning_rate max_depth nrounds objective eval_metric #> 1: Fold1 0.8662084 0.6 1.0 1 0.2 1 28 binary:logistic logloss #> 2: Fold2 0.8746695 1.0 0.8 5 0.1 5 44 binary:logistic logloss #> 3: Fold3 0.8903335 0.6 1.0 1 0.1 5 30 binary:logistic logloss ## ----------------------------------------------------------------------------- preds_xgboost <- mlexperiments::predictions( object = validator, newdata = test_x ) ## ----------------------------------------------------------------------------- perf_xgboost <- mlexperiments::performance( object = validator, prediction_results = preds_xgboost, y_ground_truth = test_y, type = "binary" ) perf_xgboost #> model performance auc prauc sensitivity specificity ppv npv tn tp fn fp tnr tpr fnr #> 1: Fold1 0.7922752 0.7922752 0.6016630 0.5128205 0.8734177 0.6666667 0.7840909 69 20 19 10 0.8734177 0.5128205 0.4871795 #> 2: Fold2 0.7687439 0.7687439 0.5601442 0.3846154 0.8860759 0.6250000 0.7446809 70 15 24 9 0.8860759 0.3846154 0.6153846 #> 3: Fold3 0.7594937 0.7594937 0.6142299 0.4871795 0.8481013 0.6129032 0.7701149 67 19 20 12 0.8481013 0.4871795 0.5128205 #> fpr bbrier acc ce fbeta #> 1: 0.1265823 0.1726355 0.7542373 0.2457627 0.5797101 #> 2: 0.1139241 0.1885316 0.7203390 0.2796610 0.4761905 #> 3: 0.1518987 0.1854326 0.7288136 0.2711864 0.5428571 ## ----include=FALSE------------------------------------------------------------ # nolint end