## ----setup-------------------------------------------------------------------- # nolint start library(mlexperiments) library(mllrnrs) ## ----------------------------------------------------------------------------- library(mlbench) data("PimaIndiansDiabetes2") dataset <- PimaIndiansDiabetes2 |> data.table::as.data.table() |> na.omit() feature_cols <- colnames(dataset)[1:8] target_col <- "diabetes" ## ----------------------------------------------------------------------------- seed <- 123 if (isTRUE(as.logical(Sys.getenv("_R_CHECK_LIMIT_CORES_")))) { # on cran ncores <- 2L } else { ncores <- ifelse( test = parallel::detectCores() > 4, yes = 4L, no = ifelse( test = parallel::detectCores() < 2L, yes = 1L, no = parallel::detectCores() ) ) } options("mlexperiments.bayesian.max_init" = 10L) ## ----------------------------------------------------------------------------- data_split <- splitTools::partition( y = dataset[, get(target_col)], p = c(train = 0.7, test = 0.3), type = "stratified", seed = seed ) train_x <- model.matrix( ~ -1 + ., dataset[data_split$train, .SD, .SDcols = feature_cols] ) train_y <- as.integer(dataset[data_split$train, get(target_col)]) - 1L test_x <- model.matrix( ~ -1 + ., dataset[data_split$test, .SD, .SDcols = feature_cols] ) test_y <- as.integer(dataset[data_split$test, get(target_col)]) - 1L ## ----------------------------------------------------------------------------- fold_list <- splitTools::create_folds( y = train_y, k = 3, type = "stratified", seed = seed ) ## ----------------------------------------------------------------------------- # required learner arguments, not optimized learner_args <- list( family = "binomial", type.measure = "class", standardize = TRUE ) # set arguments for predict function and performance metric, # required for mlexperiments::MLCrossValidation and # mlexperiments::MLNestedCV predict_args <- list(type = "response") performance_metric <- metric("auc") performance_metric_args <- list(positive = "1") return_models <- FALSE # required for grid search and initialization of bayesian optimization parameter_grid <- expand.grid( alpha = seq(0, 1, 0.05) ) # reduce to a maximum of 10 rows if (nrow(parameter_grid) > 10) { set.seed(123) sample_rows <- sample(seq_len(nrow(parameter_grid)), 10, FALSE) parameter_grid <- kdry::mlh_subset(parameter_grid, sample_rows) } # required for bayesian optimization parameter_bounds <- list( alpha = c(0., 1.) ) optim_args <- list( iters.n = ncores, kappa = 3.5, acq = "ucb" ) ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = mllrnrs::LearnerGlmnet$new( metric_optimization_higher_better = FALSE ), strategy = "grid", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$learner_args <- learner_args tuner$split_type <- "stratified" tuner$set_data( x = train_x, y = train_y ) tuner_results_grid <- tuner$execute(k = 3) #> #> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%) #> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%) #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) head(tuner_results_grid) #> setting_id metric_optim_mean lambda alpha family type.measure standardize #> 1: 1 0.1751825 0.094027663 0.70 binomial class TRUE #> 2: 2 0.1788321 0.080262968 0.90 binomial class TRUE #> 3: 3 0.1788321 0.101260561 0.65 binomial class TRUE #> 4: 4 0.1751825 0.006282777 0.10 binomial class TRUE #> 5: 5 0.1751825 0.110644301 0.45 binomial class TRUE #> 6: 6 0.1751825 0.006551691 0.05 binomial class TRUE ## ----------------------------------------------------------------------------- tuner <- mlexperiments::MLTuneParameters$new( learner = mllrnrs::LearnerGlmnet$new( metric_optimization_higher_better = FALSE ), strategy = "bayesian", ncores = ncores, seed = seed ) tuner$parameter_grid <- parameter_grid tuner$parameter_bounds <- parameter_bounds tuner$learner_args <- learner_args tuner$optim_args <- optim_args tuner$split_type <- "stratified" tuner$set_data( x = train_x, y = train_y ) tuner_results_bayesian <- tuner$execute(k = 3) #> #> Registering parallel backend using 4 cores. head(tuner_results_bayesian) #> Epoch setting_id alpha gpUtility acqOptimum inBounds Elapsed Score metric_optim_mean lambda errorMessage family #> 1: 0 1 0.70 NA FALSE TRUE 0.934 -0.1751825 0.1751825 0.094027663 NA binomial #> 2: 0 2 0.90 NA FALSE TRUE 0.971 -0.1788321 0.1788321 0.080262968 NA binomial #> 3: 0 3 0.65 NA FALSE TRUE 0.948 -0.1788321 0.1788321 0.101260561 NA binomial #> 4: 0 4 0.10 NA FALSE TRUE 0.931 -0.1751825 0.1751825 0.006282777 NA binomial #> 5: 0 5 0.45 NA FALSE TRUE 0.027 -0.1751825 0.1751825 0.110644301 NA binomial #> 6: 0 6 0.05 NA FALSE TRUE 0.030 -0.1751825 0.1751825 0.006551691 NA binomial #> type.measure standardize #> 1: class TRUE #> 2: class TRUE #> 3: class TRUE #> 4: class TRUE #> 5: class TRUE #> 6: class TRUE ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLCrossValidation$new( learner = mllrnrs::LearnerGlmnet$new( metric_optimization_higher_better = FALSE ), fold_list = fold_list, ncores = ncores, seed = seed ) validator$learner_args <- tuner$results$best.setting[-1] validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> CV fold: Fold2 #> #> CV fold: Fold3 head(validator_results) #> fold performance alpha lambda family type.measure standardize #> 1: Fold1 0.8773136 0.7568403 0.1047508 binomial class TRUE #> 2: Fold2 0.8630354 0.7568403 0.1047508 binomial class TRUE #> 3: Fold3 0.8304127 0.7568403 0.1047508 binomial class TRUE ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = mllrnrs::LearnerGlmnet$new( metric_optimization_higher_better = FALSE ), strategy = "grid", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = seed ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- return_models validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%) #> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%) #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) #> CV fold: Fold2 #> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%) #> #> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%) #> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%) #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) #> CV fold: Fold3 #> CV progress [========================================================================================================] 3/3 (100%) #> #> Parameter settings [==================>-----------------------------------------------------------------------------] 2/10 ( 20%) #> Parameter settings [============================>-------------------------------------------------------------------] 3/10 ( 30%) #> Parameter settings [=====================================>----------------------------------------------------------] 4/10 ( 40%) #> Parameter settings [===============================================>------------------------------------------------] 5/10 ( 50%) #> Parameter settings [=========================================================>--------------------------------------] 6/10 ( 60%) #> Parameter settings [==================================================================>-----------------------------] 7/10 ( 70%) #> Parameter settings [============================================================================>-------------------] 8/10 ( 80%) #> Parameter settings [=====================================================================================>----------] 9/10 ( 90%) #> Parameter settings [===============================================================================================] 10/10 (100%) head(validator_results) #> fold performance lambda alpha family type.measure standardize #> 1: Fold1 0.8741407 0.00093823 0.7 binomial class TRUE #> 2: Fold2 0.8646219 0.09563561 0.7 binomial class TRUE #> 3: Fold3 0.8648954 0.03175575 0.7 binomial class TRUE ## ----------------------------------------------------------------------------- validator <- mlexperiments::MLNestedCV$new( learner = mllrnrs::LearnerGlmnet$new( metric_optimization_higher_better = FALSE ), strategy = "bayesian", fold_list = fold_list, k_tuning = 3L, ncores = ncores, seed = 312 ) validator$parameter_grid <- parameter_grid validator$learner_args <- learner_args validator$split_type <- "stratified" validator$parameter_bounds <- parameter_bounds validator$optim_args <- optim_args validator$predict_args <- predict_args validator$performance_metric <- performance_metric validator$performance_metric_args <- performance_metric_args validator$return_models <- TRUE validator$set_data( x = train_x, y = train_y ) validator_results <- validator$execute() #> #> CV fold: Fold1 #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold2 #> CV progress [====================================================================>-----------------------------------] 2/3 ( 67%) #> #> Registering parallel backend using 4 cores. #> #> CV fold: Fold3 #> CV progress [========================================================================================================] 3/3 (100%) #> #> Registering parallel backend using 4 cores. head(validator_results) #> fold performance alpha lambda family type.measure standardize #> 1: Fold1 0.8773136 0.9 0.08390173 binomial class TRUE #> 2: Fold2 0.8767848 0.1 0.15109601 binomial class TRUE #> 3: Fold3 0.8507631 0.5 0.11271736 binomial class TRUE ## ----------------------------------------------------------------------------- preds_glmnet <- mlexperiments::predictions( object = validator, newdata = test_x ) ## ----------------------------------------------------------------------------- perf_glmnet <- mlexperiments::performance( object = validator, prediction_results = preds_glmnet, y_ground_truth = test_y, type = "binary" ) perf_glmnet #> model performance auc prauc sensitivity specificity ppv npv tn tp fn fp tnr tpr fnr #> 1: Fold1 0.7656605 0.7656605 0.5841923 0.3333333 0.8860759 0.5909091 0.7291667 70 13 26 9 0.8860759 0.3333333 0.6666667 #> 2: Fold2 0.7831873 0.7831873 0.5822704 0.3846154 0.8860759 0.6250000 0.7446809 70 15 24 9 0.8860759 0.3846154 0.6153846 #> 3: Fold3 0.7627394 0.7627394 0.5747411 0.3589744 0.8607595 0.5600000 0.7311828 68 14 25 11 0.8607595 0.3589744 0.6410256 #> fpr bbrier acc ce fbeta #> 1: 0.1139241 0.1831706 0.7033898 0.2966102 0.4262295 #> 2: 0.1139241 0.1786208 0.7203390 0.2796610 0.4761905 #> 3: 0.1392405 0.1861673 0.6949153 0.3050847 0.4375000 #> ## ----include=FALSE------------------------------------------------------------ # nolint end