## ----fig.height=3.5, fig.width=5---------------------------------------------- # load package library("metaBMA") # load data set data(towels) # Half-normal (truncated to > 0) p1 <- prior("norm", c(mean=0, sd=.3), lower = 0) p1 p1(1:3) plot(p1) # custom prior p1 <- prior("custom", function(x) x^3-2*x+3, lower = 0, upper = 1) plot(p1, -.5, 1.5) ## ----fig.height=3.5, fig.width=5---------------------------------------------- # Fixed-effects progres <- capture.output( # suppress Stan progress for vignette mf <- meta_fixed(logOR, SE, study, towels, d = prior("norm", c(mean=0, sd=.3), lower=0)) ) mf # plot posterior distribution plot_posterior(mf) ## ----fig.height=3.5, fig.width=5---------------------------------------------- # Random-effects progres <- capture.output( # suppress Stan progress for vignette mr <- meta_random(logOR, SE, study, towels, d = prior("norm", c(mean=0, sd=.3), lower=0), tau = prior("t", c(location=0, scale=.3, nu=1), lower=0), iter = 1500, logml_iter = 2000, rel.tol = .1) ) mr # plot posterior distribution plot_posterior(mr, main = "Average effect size d") plot_posterior(mr, "tau", main = "Heterogeneity tau") ## ----fig.height=4.5, fig.width=6---------------------------------------------- mb <- meta_bma(logOR, SE, study, towels, d = prior("norm", c(mean=0, sd=.3), lower=0), tau = prior("t", c(location=0, scale=.3, nu=1), lower=0), iter = 1500, logml_iter = 2000, rel.tol = .1) mb plot_posterior(mb, "d", -.1, 1.4) plot_forest(mb) ## ----eval = FALSE, fig.height=4.5, fig.width=6-------------------------------- # mp <- predicted_bf(mb, SE = .2, sample = 30) # plot(mp)