
Making and using bathymetric maps in R with
marmap

Eric Pante & Benoit Simon Bouhet

November 12, 2022

Contents
1 Introduction 1

2 A quick tutorial 1
2.1 Getting data into R . 2
2.2 Plotting bathymetric data . 3
2.3 Preparing maps in the Pacific antimeridian region 7
2.4 Irregularly-spaced data . 9

3 Further reading 11

1 Introduction
In this vignette we introduce marmap [2], a package designed for manipulating
bathymetric data in R. marmap uses simple latitude-longitude-depth data in ascii
format and takes advantage of the advanced plotting tools available in R to build
publication-quality bathymetric maps. Functions to query data (bathymetry,
sampling information...) directly by clicking on marmap maps are available.
Bathymetric and topographic data can also be used to constrain the calculation
of realistic shortest path distances. Such information can be used in molecular
ecology, for example, to evaluate genetic isolation by distance in a spatially-
explicit framework.

2 A quick tutorial
In this tutorial, we will import publicly available data and produce bathymetric
maps of Papua New Guinea.

1

2.1 Getting data into R
Launch R. Navigate to your working directory (for example, with setwd()).
Then launch the marmap package. The simplest way to get bathymetric data
into R for use with marmap is to use the getNOAA.bathy() function. It queries
the ETOPO 2022 dataset [1] hosted on the NOAA server, based on coordinates
and a resolution given by the user (please note that this function depends on
the availability of the NOAA server). In one line, we can get the data into R
and start plotting:

library(marmap)
papoue <- getNOAA.bathy(lon1 = 140, lon2 = 155,

lat1 = -13, lat2 = 0, resolution = 10)

When the argument keep (defaults to FALSE) is set to TRUE, the downloaded
data are saved into a file within your current working directory. If an identical
query is performed several times (i.e. using identical latitudes, longitudes and
resolution), getNOAA.bathy() will load data from the file previously written to
the disk instead of querying the NOAA database again. This behavior should
be used preferentially to reduce the number of uncessary queries to the NOAA
website and to reduce data load time.

summary.bathy() helps you check the data ; because bathy is a class, and R
an object-oriented language, you just have to use summary(). R will recognize
that you are feeding summary() an object of class bathy. This is also true for
plot.bathy() and plot().

summary(papoue)

Bathymetric data of class 'bathy', with 91 rows and 79 columns
Latitudinal range: -13 to 0 (13 S to 0 N)
Longitudinal range: 140 to 155 (140 E to 155 E)
Cell size: 10 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-8750 -3123 -1540 -1641 -4 3711

First 5 columns and rows of the bathymetric matrix:

-13 -12.833333 -12.666667 -12.5 -12.333333
140 -36 -35 -35 -35 -35
140.166667 -35 -34 -34 -34 -33
140.333333 -33 -32 -32 -32 -31
140.5 -30 -30 -30 -29 -29
140.666667 -28 -28 -27 -27 -27

2

2.2 Plotting bathymetric data
We can now use plot() to map the data. You can see that the 10 minute
resolution is a bit rough, but enough to demonstrate how marmap works (to
increase the resolution, simply decrease the value for the resolution argument).

plot(papoue)

Longitude

L
a

ti
tu

d
e

140 145 150 155

−
1

2
−

1
0

−
8

−
6

−
4

−
2

0

We can now use some of the options of plot.bathy() to make the map more
informative. First, we can plot a heat map, using the built in color palette. We
can also add a scale in kilometers.

plot(papoue, image = TRUE)
scaleBathy(papoue, deg = 2, x = "bottomleft", inset = 5)

3

140 142 144 146 148 150 152 154

−
1

2
−

1
0

−
8

−
6

−
4

−
2

0

Longitude

L
a

ti
tu

d
e

217 km

The bpal options allows you to use a custom color palette, which can be
easily prepared with the R function colorRampPalette(). We store the color
ramp in the object called blues, and when we call it in plot.bathy(), we
specify how many colors need to be used in the palette (here 100).

blues <- colorRampPalette(c("red","purple","blue",
"cadetblue1","white"))

plot(papoue, image = TRUE, bpal = blues(100))

4

0 100 200 300 400

−
6

0
0

0
−

4
0

0
0

−
2

0
0

0
0

Distance from start of transect (km)

D
e

p
th

 (
m

)

For maps using the image option of plot.bathy(), you might see that the
PDF rendering of your map is slightly different from the way it looks in R: the
small space between cells becomes visible. This is probably due to the way your
system handles PDFs. A simple way around this phenomenon is to export the
map in a raster (rather than vector) format. You can use the tiff(), jpeg(),
bmp() or png() functions available in R.

This map looks a little crowded ; let’s dim the isobaths (dark grey color and
lighter line width), and strengthen the coastline (black color and thicker line
width). The deepest isobaths will be hard to see on a dark blue background
; we can therefore choose to plot these in light grey to improve contrast. The
option drawlabel controls whether isobath labels (e.g. “-3000”) are plotted or
not.

plot(papoue, image = TRUE, bpal = blues(100),
deep = c(-9000, -3000, 0),
shallow = c(-3000, -10, 0),
step = c(1000, 1000, 0),
lwd = c(0.8, 0.8, 1), lty = c(1, 1, 1),
col = c("lightgrey", "darkgrey", "black"),
drawlabel = c(FALSE, FALSE, FALSE))

5

140 142 144 146 148 150 152 154

−
1

2
−

1
0

−
8

−
6

−
4

−
2

0

Longitude

L
a

ti
tu

d
e

The bpal argument of plot.bathy() also accepts a list of depth/altitude
slices associated with a set of colors for each slice. This method makes it possible
to easily produce publication-quality maps. For instance, using the papoue
dataset downloaded at full resolution (i.e. with the resolution argument of
the getNOAA.bathy() function set to 1) we can easily produce a high-resolution
map:

Creating a custom palette of blues
blues <- c("lightsteelblue4", "lightsteelblue3",

"lightsteelblue2", "lightsteelblue1")

Plotting the bathymetry with different colors for land and sea
plot(papoue, image = TRUE, land = TRUE, lwd = 0.1,

bpal = list(c(0, max(papoue), "grey"),
c(min(papoue),0,blues)))

Making the coastline more visible
plot(papoue, deep = 0, shallow = 0, step = 0,

lwd = 0.4, add = TRUE)

6

2.3 Preparing maps in the Pacific antimeridian region
The antimeridian (or antemeridian) is the 180th meridian and is located about in
the middle of the Pacific Ocean, east of New Zealand and Fidji, west of Hawaii
and Tonga. If you want to prepare a map of the Aleutian Islands (Alaska),
your longitude values may, for example, go from 165 to 180 degrees East, and
180 to 165 degrees West. Crossing the antemeridian means that you will need
to download data for the eastern (165 to 180) and the western (-180 to -165)
portions of the area of interest. For example, if you try to download bathymetric
data for the Aleutians in one step on the GEBCO website (http://www.gebco.
net), an error message tells you “The Westernmost is more Easterly than the
Easternmost. Please amend your search query”.
getNOAA() has an argument to deal with the antemeridian region. For the
Aleutians, you would use the antimeridian argument. summary.bathy() can
interpret antimeridian areas as well. When you plot your antimeridian region,
the default behavior of plot.bathy() is to scale longitudes from 0 to 360 degrees
(170E to 170W would be displayed as 170, 190 instead of 170, -170). You can
use the argument axes=FALSE in plot.bathy() and add correct labels with
antimeridian.box(). We have set the default behavior of plot.bathy() in this
way to remind the user that the scale of the bathy object, in the antimeridian
region, goes from 0 to 360; if you need to plot points on the map, you need
to take this into account (i.e. a point at -170 longitude must be plotted using

7

http://www.gebco.net
http://www.gebco.net

−170 + 360 = 190, not 170 nor -170).

aleu <- getNOAA.bathy(165, -145, 50, 65, resolution = 5,
antimeridian = TRUE)

plot(aleu, image = TRUE, land = TRUE, axes = FALSE, lwd=0.1,
bpal = list(c(0, max(aleu), grey(.7), grey(.9), grey(.95)),

c(min(aleu), 0, "darkblue", "lightblue")))
plot(aleu, n = 1, lwd = 0.5, add = TRUE)
antimeridian.box(aleu)

summary(aleu)

Bathymetric data of class 'bathy', with 601 rows and 181 columns
Latitudinal range: 50 to 65 (50 N to 65 N)
Longitudinal range: 165 to 215 (165 E to 145 W)
Cell size: 5 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-7440 -3839 -334 -1833 -6 5508

First 5 columns and rows of the bathymetric matrix:

50 50.0833333333333 50.1666666666666
165 -5534 -5590 -5617
165.083333333333 -5396 -5617 -5729
165.166666666667 -5568 -5691 -5752
165.25 -5666 -5688 -5753
165.333333333333 -5677 -5751 -5784

50.25 50.3333333333333
165 -5622 -5583
165.083333333333 -5664 -5601
165.166666666667 -5709 -5707
165.25 -5770 -5771
165.333333333333 -5779 -5770

8

Alternatively, it is possible to import two compatible bathy objects (for
instance from GEBCO), one for the eastern part and one for the western part
of the area of interest. The function collate.bathy() takes care of the stitching
process: relabelling longitudes in the 0-360 degrees range, removing duplicated
data (i.e. the data for longitude 180 is often present once in each individual
dataset and thus needs to be removed once), etc. Providing that we downloaded
two files east.nc and west.nc from the GEBCO website, creating a proper
bathy object for the antimeridian region is as simple as:

a <- getGEBCO.bathy("east.nc")
b <- getGEBCO.bathy("west.nc")
stitched <- collate.bathy(a,b)

2.4 Irregularly-spaced data
From the ground up, marmap was built to work with data fitting in regularly
spaced grids, such as the global bathymetric databases hosted on the NOAA
or GEBCO servers. However, it is not uncommon to get custom xyz data
that do not fit in such grids. See for instance this dataset modified from a
dataset kindly provided by Noah Lottig from the University of Wisconsin (http:
//limnology.wisc.edu/personnel/lottig/):

data(irregular)
head(irregular)

lon lat depth
1 -80.39988 55.31179 -17.4
2 -80.40047 55.31170 -16.9
3 -80.39884 55.31501 -1.0
4 -80.40038 55.30992 -18.5
5 -80.40293 55.30729 -6.6
6 -80.39938 55.31303 -15.7

plot(irregular$lon, irregular$lat, pch = 19, cex = 0.3, asp = 1)

9

http://limnology.wisc.edu/personnel/lottig/
http://limnology.wisc.edu/personnel/lottig/

Longitude

L
a

ti
tu

d
e

140 145 150 155

−
1

5
−

1
0

−
5

0

326 km

0

1000

2000

3000

4000

5000

6000

depth (m)

Using several functions from the raster package, we provide an easy way to
transform such irregularly-spaced xyz data into a regularly-spaced grid. First,
we transform the original data into a raster object of user-defined dimensions:

reg <- griddify(irregular, nlon = 40, nlat = 60)
class(reg)

[1] "RasterLayer"
attr(,"package")
[1] "raster"

Then, we transform this object into a bathy object for easy plotting:

bat <- as.bathy(reg)
class(bat)

[1] "bathy"

Plot the new bathy object
plot(bat, image = TRUE, lwd = 0.1)

10

The resulting bathy object can contain either:

• empty cells (i.e. cells containing NAs) when none of the original data
points fall within a given cell,

• the mean of the original depth/altitude values for cells containing more
than one original value,

• or the value of the original dataset when exactly 1 point falls within a
given cell.

A bilinear smoothing is then applied in order to try to fill most empty cells.
The nlon and nlat arguments of griddify() are thus of critical importance in
order to limit the number of empty cells in the resulting bathy object.

3 Further reading
Other vignettes are available for marmap. To get more information about data
import and export strategies, or to learn about the capabilities of marmap to
analyse bathymetric data, please check the other vignettes:

vignettes("marmap-ImportExport")
vignettes("marmap-DataAnalysis")

11

References
[1] NOAA National Centers for Environmental Information (2022) ETOPO

2022 15 Arc-Second Global Relief Model. NOAA National Centers for En-
vironmental Information. URL https://doi.org/10.25921/fd45-gt74

[2] Pante E, Simon-Bouhet B (2013) marmap: A Package for Importing, Plot-
ting and Analyzing Bathymetric and Topographic Data in R. PLoS ONE
8:e73051

12

https://doi.org/10.25921/fd45-gt74

	Introduction
	A quick tutorial
	Getting data into R
	Plotting bathymetric data
	Preparing maps in the Pacific antimeridian region
	Irregularly-spaced data

	Further reading

