
Data import and export strategies in marmap

Eric Pante & Benoit Simon-Bouhet

November 12, 2022

Contents
1 Overview of the different import and export strategies available

in marmap 1

2 Importing bathymetric data from GEBCO 3

3 Other sources of netcdf files 3

4 Getting bathymetric data from an xyz file 6

5 Getting bathymetric data from NOAA: local SQL database 7

1 Overview of the different import and export
strategies available in marmap

getNOAA.bathy() is the easiest way to load data into R, but it depends on the
NOAA download protocol, and one must have an internet connection. However,
setting the keep argument to TRUE will save on disk the data downloaded from
the NOAA servers when the function is called for the first time. Any subsequent
call to getNOAA.bathy() with the same list of arguments (i.e. same longitudes,
latitudes and resolution) will preferentially load the dataset saved on disk in the
current working directory. This allows the users to run scripts without having to
query the NOAA servers and download the same data again and again, making
the use of getNOAA.bathy() possible even off-line. read.bathy() allows import
of data into R, and this data can be located on a drive ; an internet connec-
tion is therefore not mandatory. This is a good way to import data that have
been saved locally on your drive, and may be faster than re-downloading data
from the NOAA server at the beginning of each R session. If the user is build-
ing maps routinely, we propose two functions to create a local database that
can be accessed from within R. These functions are setSQL() and subsetSQL().

1

Function Job Input Output Internet
getNOAA.bathy() downloads data

from NOAA
servers

coordinates of
bounding box
and resolution

data matrix of
class bathy

yes

readGEBCO.bathy() imports data
from GEBCO
file

name of ex-
ternal file in
netCDF format

data matrix of
class bathy

no

read.bathy() imports data
into R

name of exter-
nal file with xyz
data

data matrix of
class bathy

no

setSQL() creates a local
SQL database
of bathymetric
data

name of exter-
nal file with xyz
data

an SQL
database

no

subsetSQL() queries a local
SQL database

coordinates of
bounding box
and resolution

data matrix of
class bathy

no

as.xyz() converts a
dataset of class
bathy into an
xyz table

dataset of class
bathy (an R ob-
ject)

an xyz table
(an R object)

no

as.bathy() converts an
xyz table or an
object of class
raster into an
dataset of class
bathy

an xyz table
(an R object)

dataset of class
bathy (an R ob-
ject)

no

2

2 Importing bathymetric data from GEBCO
readGEBCO.bathy() provides a data source alternative to the NOAA-hosted
ETOPO1 data [1]. The GEBCO data, hosted on the British Oceanographic
Data Center server (http://www.gebco.net), is available at the 30 second and
1 minute resolutions. Both types can be imported using readGEBCO.bathy(),
using the ncdf4 package [5] to load netCDF data into R. A third database
type, GEBCO_08 SID, is available from the website. This database contains a
Source IDentifier (SID) specifying which grid cells have depth information based
on soundings; it does not contain bathymetry or topography data. The function
readGEBCO.bathy() can read this type of database as well, and only the SID
information will be included in the object of class bathy. Therefore, to display
a map with both the bathymetry and the SID information, you will have to
download both datasets from GEBCO, and import and plot both independently.
Here is an example for the region of the Mediterranean Sea including Corsica
and Sardinia:

the bathymetry data
med <- readGEBCO.bathy("gebco_08_7_38_10_43_corsica.nc")
summary(med)

the SID data
sid <- readGEBCO.bathy("gebco_SID_7_38_10_43_corsica.nc")
summary(sid)

a pretty custom color palette
blues <- colorRampPalette(c("lightblue", "cadetblue2",

"cadetblue1", "white"))

a first plot for bathymetry
plot(med, n = 1, image = TRUE, bpal = blues(100), main =

"Corsica & Sardinia bathymetry\n GEODAS 08 & SID datasets")

a second layer with the SID data
contour(as.numeric(rownames(sid)), as.numeric(colnames(sid)),

sid, drawlabels = FALSE, lwd = 0.1, add = TRUE)

Because the resolution of GEBCO data is rather fine, we offer the possibility
of downsizing the dataset with the resolution argument of readGEBCO.bathy().
This argument specifies the resolution of the object of class bathy the user
gets after importing GEBCO data in R. resolution is in units of the selected
database: in “GEBCO_1min”, resolution is in minutes; in “GEBCO_08”,
resolution is in 30 arcseconds (that is, resolution = 3 corresponds to 3 times
30 sec, or 1.5 arcminute resolution).

3 Other sources of netcdf files
One of the most widely used format for georeferenced data is netcdf. Bathymet-
ric data is often presented as netcdf files since it is a compact, self-describing,
machine-independent data format especially usefull for large scale and/or high

3

http://www.gebco.net

resolution gridded data. For instance, the European Marine Observation and
Data Network (emodnet: http://www.emodnet.eu/bathymetry) makes bathy-
metric data publicly available for most european waters. Among other formats,
netcdf files of bathymetry for large regions (e.g. Bay of Biscay and Iberian
coasts, Celtic Seas, Greater North Sea…) are available for download. marmap
does not offer an automated way to import such files since almost every netcdf
file is unique. However, a small number of very simple steps make it possible
to import netcdf files and transform them to bathy objects. Here is an example
with the Celtic Seas.mnt file downloaded on the emodnet website:

Load relevant packages
library(marmap) ; library(ncdf4)

Load the netcdf file into R using the ncdf4 package
nc <- nc_open("Celtic Seas.mnt")

Print the content of the file
nc

[1] "file Celtic Seas.mnt has 9 dimensions:"
[1] "CIB_BLOCK_DIM Size: 1024"
[1] "mbHistoryRecNbr Size: 20"
[1] "mbNameLength Size: 20"
[1] "mbCommentLength Size: 256"
[1] "mbLabelLength Size: 40"
[1] "LAYERS_HEADERS Size: 20"
[1] "LINES Size: 3840"
[1] "COLUMNS Size: 6120"
[1] "mbCDILength Size: 100"
[1] "------------------------"
[1] "file Celtic Seas.mnt has 17 variables:"
[1] "int mbHistDate[mbHistoryRecNbr]

Longname:History date Missval:2147483647"
[1] "int mbHistTime[mbHistoryRecNbr]

Longname:History time (UT) Missval:NA"
[1] "byte mbHistCode[mbHistoryRecNbr]

Longname:History code Missval:0"
[1] "char mbHistAutor[mbNameLength,mbHistoryRecNbr]

Longname:History autor Missval:NA"
[1] "char mbHistModule[mbNameLength,mbHistoryRecNbr]

Longname:History module Missval:NA"
[1] "char mbHistComment[mbCommentLength,mbHistoryRecNbr]

Longname:History comment Missval:NA"
[1] "char Layer_name[mbNameLength,LAYERS_HEADERS]

Longname:Nom de la couche Missval:NA"
[1] "short DEPTH[COLUMNS,LINES]

Longname:DEPTH Missval:32767"
[1] "short SMO_DEPTH[COLUMNS,LINES]

Longname:SMO_DEPTH Missval:32767"
[1] "int OFF_DEPTH[COLUMNS,LINES]

4

http://www.emodnet.eu/bathymetry

Longname:OFF_DEPTH Missval:2147483647"
[1] "int VSOUNDINGS[COLUMNS,LINES]

Longname:VSOUNDINGS Missval:2147483647"
[1] "short MIN_SOUNDING[COLUMNS,LINES]

Longname:MIN_SOUNDING Missval:32767"
[1] "short MAX_SOUNDING[COLUMNS,LINES]

Longname:MAX_SOUNDING Missval:32767"
[1] "short STDEV[COLUMNS,LINES]

Longname:STDEV Missval:32767"
[1] "char CDI[mbCDILength,COLUMNS,LINES]

Longname:CDI Missval:NA"
[1] "byte CELL_NUMBER[COLUMNS,LINES]

Longname:CELL_NUMBER Missval:127"
[1] "int CDI_SOUNDINGS[COLUMNS,LINES]

Longname:CDI_SOUNDINGS Missval:2147483647"

Here, we see that a table called DEPTH is available and that its dimensions
are [COLUMS,LINES] (i.e. 6120 rows and 3840 columns). Extracting these data
to create a bathy object is as simple as:

celt <- ncvar_get(nc, "DEPTH")
colnames(celt) <- ncvar_get(nc, "LINES")
rownames(celt) <- ncvar_get(nc, "COLUMNS")
class(celt) <- "bathy"

celt is now an object of class bathy on which we can use any marmap
function, even if missing data are present. Here is the plot of this bathy object
of more than 23.5 million cells:

Custom color palette
blues <- colorRampPalette(c("lightsteelblue4", "lightsteelblue3",

"lightsteelblue2", "lightsteelblue1"))

Map
plot(celt, image = TRUE, bpal = blues(100), lwd = 0.1)

5

This map appears slightly blurred here since we had to reduce the image
quality to produce this vignette. The quality of the original map produced in R is
much higher. Since the emodnet files have a resolution of 15 seconds, producing
a map at such a large scale is time consumming. We thus recommend reading
the “Working with big files” section of the marmap-DataAnalysis vignette for
strategies to deal with such big datasets.

4 Getting bathymetric data from an xyz file
read.bathy() will read xyz data from any source. It can import bathymetric
data for non rectangular areas or with lots of missing data as is often the case
for custom datasets acquired by various types of sonar systems (e.g. Multi-
beam Echo Sounders). Alternatively, xyz files can be imported in R using
read.table() and transformed to bathy objects with as.bathy(). Here, we
will get ETOPO1 data [1] hosted on the NOAA GEODAS server [3]. To get
the data, use the following link: http://www.ngdc.noaa.gov/mgg/gdas/gd_
designagrid.html.

To prepare data from NOAA, give a name to your custom grid, choose the
database (ETOPO1 1-minute Global Relief), fill the custom grid form (upper
latitude: 0, lower latitude: 13S, left longitude: 140E, right longitude: 155E) for
a grid cell size of 10 minute, and choose “XYZ (lon,lat,depth)” as the “Output
Grid Format”, “No Header” as the “Output Grid Header”, and either of the
space, tab of comma as the column delimiter (either can be used, but “comma”
is the default import format of read.bathy()). Choose “omit empty grid cells”
to reduce memory usage. Submit your job, and retrieved your data. You will
get a zipped folder, in which you will find (in a subfolder) a .xyz file with your
data. Place it, for example, in your work folder.

The resolution of 10 minutes is a low resolution that will keep the size of the
example file small, about 200 kb. Increasing the resolution to 1 minute would
result in a file size of about 20 mb.

6

http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html
http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html

Launch R. Navigate to your working directory (for example, with setwd()).
Then laod the marmap package [4] with library(marmap) and your xyz data
(we will call it png.xyz) with read.bathy(). This converts your data into an
R object of class bathy. summary.bathy() helps you check the data ; because
bathy is a class, and R an object-oriented language, you just have to use
summary(), because R will recognize that you are feeding summary() an object
of class bathy. This is also true for plot.bathy() and plot().

library(marmap)
papoue <- read.bathy('png.xyz', header = FALSE, sep = "\t")
summary(papoue)

Bathymetric data of class 'bathy', with 91 rows and 79 columns
Latitudinal range: -13 to 0 (13 S to 0 N)
Longitudinal range: 140 to 155 (140 E to 155 E)
Cell size: 10 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-8750 -3123 -1540 -1641 -4 3711

First 5 columns and rows of the bathymetric matrix:

-13 -12.833333 -12.666667 -12.5 -12.333333
140 -36 -35 -35 -35 -35
140.166667 -35 -34 -34 -34 -33
140.333333 -33 -32 -32 -32 -31
140.5 -30 -30 -30 -29 -29
140.666667 -28 -28 -27 -27 -27

5 Getting bathymetric data from NOAA: local
SQL database

setSQL() and subsetSQL() create and query a local SQL database for bathy-
metric data. These tools are made for routine use with no internet connection.
The full ETOPO1 database, or a subset (for example), can be downloaded on
your computer, and used to set an SQL database, which size will be approxi-
mately the same as your original xyz data (unzipped ETOPO1 is about 5 Go).
The advantage of SQL, a language for querying large databases, are manyfold.
Its use will allow rapid upload of data into R, directly as bathy objects (and
therefore directly useable for plotting and analysis) with a smaller footprint
on your memory than if you tried to load a very large xyz file into R and then
subset-ed it. Here is a simple example on how to set up and use an SQL database
for marmap.

Use a local file with xyz data (we can re-use the png.xyz that we created
above for use with read.bathy()), and submit it to setSQL(). Make sure that
no file called bathy_db is present in your working directory (since we will use

7

the default value for the db.name argument of setSQL and subsetSQL).

setSQL(bathy = "png.xyz", header = FALSE, sep = "\t")

Error: Table bathy_db exists in database, and both overwrite and append
are FALSE

This will created a file bathy_db in your working directory, which size is
about the size of (or larger than) your original data. If you want to create
a database for frequent use, you just need to do this once. subsetSQL() will
know where to get the data in future R sessions. If setSQL() worked properly,
it will return TRUE. If there is a problem (e.g. database connection already
open, database file already created ...) it will return FALSE. Lets query a subset
of the png dataset, and check that it is indeed what we asked for with the
summary.bathy() function:

test <- subsetSQL(min_lon = 145, max_lon = 150,
min_lat = -2, max_lat = 0)

summary(test)

Bathymetric data of class 'bathy', with 29 rows and 11 columns
Latitudinal range: -1.83 to -0.17 (1.83 S to 0.17 S)
Longitudinal range: 145.17 to 149.83 (145.17 E to 149.83 E)
Cell size: 10 minute(s)

Depth statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.
-6650 -3282 -2076 -2594 -1543 72

First 5 columns and rows of the bathymetric matrix:

-1.833333 -1.666667 -1.5 -1.333333 -1.166667
145.166667 -1001 -1348 -249 -1774 -2079
145.333333 -1137 -1579 -1938 -1794 -1957
145.5 -1069 -1833 -2007 -2097 -2166
145.666667 -1295 -2020 -2123 -2301 -2289
145.833333 -1728 -1912 -1981 -2183 -2350

Finally, when you are done with the SQL dataset, you can remove it with:

system("rm bathy_db")

References
[1] Amante C, Eakins BW (2009) Etopo1 1 arc-minute global relief model:

Procedures, data sources and analysis. NOAA Technical Memorandum
NESDIS NGDC-24: 1-19.

8

[2] James DA, Falcon S (2013) RSQLite: SQLite interface for R. URL http:
//CRAN.R-project.org/package=RSQLite. R package version 0.11.4.

[3] NOAA National Geophysical Data Center. GEODAS Grid Transla-
tor - Design a grid. URL http://www.ngdc.noaa.gov/mgg/gdas/gd_
designagrid.html.

[4] Pante E, Simon-Bouhet B (2013) marmap: A Package for Importing, Plot-
ting and Analyzing Bathymetric and Topographic Data in R. PLoS ONE
8:e73051

[5] Pierce D (2015) ncdf4: Interface to Unidata netCDF (Version 4 or Earlier)
Format Data Files. URL http://CRAN.R-project.org/package=ncdf4 R
package version 1.14.

9

http://CRAN.R-project.org/package=RSQLite
http://CRAN.R-project.org/package=RSQLite
http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html
http://www.ngdc.noaa.gov/mgg/gdas/gd_designagrid.html
http://CRAN.R-project.org/package=ncdf4

	Overview of the different import and export strategies available in marmap
	Importing bathymetric data from GEBCO
	Other sources of netcdf files
	Getting bathymetric data from an xyz file
	Getting bathymetric data from NOAA: local SQL database

