## ----setup, include = FALSE, warning = FALSE-------------------------------------------- library(knitr) library(formatR) options(width = 90, tidy = TRUE, warning = FALSE, message = FALSE) opts_chunk$set( comment = "", warning = FALSE, message = FALSE, echo = TRUE, tidy = TRUE ) ## ----load------------------------------------------------------------------------------- library(lsasim) ## ----packageVersion--------------------------------------------------------------------- packageVersion("lsasim") ## ----equation, eval=FALSE--------------------------------------------------------------- # cluster_gen(n, # N = 1, cluster_labels = NULL, resp_labels = NULL, # cat_prop = NULL, n_X = NULL, n_W = NULL, c_mean = NULL, # sigma = NULL, cor_matrix = NULL, separate_questionnaires = TRUE, # collapse = "none", sum_pop = sapply(N, sum), calc_weights = TRUE, # sampling_method = "mixed", rho = NULL, theta = FALSE, # verbose = TRUE, print_pop_structure = verbose # ) ## ----ex 1------------------------------------------------------------------------------- set.seed(4388) cg <- cluster_gen(c(n = 3, N = 5)) ## ----ex 1_str--------------------------------------------------------------------------- cg$n[[1]] cg$n[[2]] cg$n[[3]] ## ----ex 2------------------------------------------------------------------------------- set.seed(4388) n <- list(3, c(20, 15, 25)) N <- list(5, c(200, 500, 400, 100, 100)) cg <- cluster_gen(n, N, n_X = 5, n_W = 2) ## ----ex 2_str--------------------------------------------------------------------------- str(cg$school[[1]]) str(cg$school[[2]]) str(cg$school[[3]]) ## ----ex 3------------------------------------------------------------------------------- set.seed(4388) cg <- cluster_gen(c(5, 1000), rho = .9, n_X = 2, n_W = 0, c_mean = 10) sapply(1:5, function(s) mean(cg$school[[s]]$q1)) # means per school != 10 mean(sapply(1:5, function(s) mean(cg$school[[s]]$q1))) # closer to c_mean ## ----ex 3_str--------------------------------------------------------------------------- str(cg) ## ----ex 4------------------------------------------------------------------------------- x <- cluster_gen(c(5, 1000), rho = .5, n_X = 2, n_W = 0, c_mean = 1:5) ## ----ex 4_str--------------------------------------------------------------------------- anova(x) ## ----ex 5------------------------------------------------------------------------------- set.seed(4388) n <- c(cnt = 1, sch = 2, stu = 5) cg <- cluster_gen(n = n) ## ----ex 5_str--------------------------------------------------------------------------- cg ## ----ex 6, warning = TRUE--------------------------------------------------------------- set.seed(4388) n <- c(cnt = 1, sch = 2, stu = 5) cg <- cluster_gen(n = n, n_X = 10, c_mean = c(0.3, 0.4, 0.5, 0.6, 0.7)) ## ----ex 6_str--------------------------------------------------------------------------- cg ## ----ex 7------------------------------------------------------------------------------- set.seed(4388) n <- c(school = 3, class = 2, student = 5) cg <- cluster_gen(n, n_X = c(1, 2), sigma = list(.1, c(1, 2))) ## ----ex 7_summary, warning = TRUE------------------------------------------------------- summary(cg) ## ----ex 8------------------------------------------------------------------------------- set.seed(4388) n <- c(school = 3, class = 2, student = 5) cg <- cluster_gen(n, n_X = c(1, 2), n_W = c(0, 1), c_mean = list(.1, c(0.55, 0.32))) ## ----ex 8_summary----------------------------------------------------------------------- cg