## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----load_libraries_hidden, eval=TRUE, echo=FALSE, message=FALSE, results='hide'---- library(landscapemetrics) library(terra) library(dplyr) # internal data needs to be read landscape <- terra::rast(landscapemetrics::landscape) augusta_nlcd <- terra::rast(landscapemetrics::augusta_nlcd) podlasie_ccilc <- terra::rast(landscapemetrics::podlasie_ccilc) ## ----------------------------------------------------------------------------- # import raster # for local file: rast("pathtoyourraster/raster.asc") # ... or any other raster file type, geotiff, ... # Check your landscape check_landscape(landscape) # because CRS is unknown, not clear check_landscape(podlasie_ccilc) # wrong units check_landscape(augusta_nlcd) # everything is ok ## ----message=FALSE------------------------------------------------------------ # import raster # for local file: rast("pathtoyourraster/raster.asc") # ... or any other raster file type, geotiff, ... # Calculate e.g. perimeter of all patches lsm_p_perim(landscape) ## ----message=FALSE------------------------------------------------------------ # all patch IDs of class 2 with an ENN > 2.5 subsample_patches <- landscape |> lsm_p_enn() |> dplyr::filter(class == 2 & value > 2.5) |> dplyr::pull(id) # show results subsample_patches ## ----------------------------------------------------------------------------- # list all available metrics list_lsm() # list only aggregation metrics at landscape level and just return function name list_lsm(level = "landscape", type = "aggregation metric", simplify = TRUE) # you can also combine arguments and only return the function names list_lsm(level = c("patch", "landscape"), type = "core area metric", simplify = TRUE) ## ----message=FALSE------------------------------------------------------------ # bind results from different metric functions patch_metrics <- dplyr::bind_rows( lsm_p_cai(landscape), lsm_p_circle(landscape), lsm_p_enn(landscape) ) # look at the results patch_metrics ## ----message=FALSE------------------------------------------------------------ # bind results from different metric functions patch_metrics <- dplyr::bind_rows( lsm_p_cai(landscape), lsm_p_circle(landscape), lsm_p_enn(landscape) ) # look at the results patch_metrics_full_names <- dplyr::left_join(x = patch_metrics, y = lsm_abbreviations_names, by = "metric") patch_metrics_full_names ## ----message=FALSE------------------------------------------------------------ # calculate certain metrics calculate_lsm(landscape, what = c("lsm_c_pland", "lsm_l_ta", "lsm_l_te")) # calculate all aggregation metrics on patch and landscape level calculate_lsm(landscape, type = "aggregation metric", level = c("patch", "landscape")) # show full information of all metrics calculate_lsm(landscape, what = c("lsm_c_pland", "lsm_l_ta", "lsm_l_te"), full_name = TRUE)