## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=7, fig.height=5 ) ## ----install, eval=FALSE------------------------------------------------------ # install.packages("incidence") ## ----install2, eval=FALSE----------------------------------------------------- # devtools::install_github("reconhub/incidence") ## ----data--------------------------------------------------------------------- library(outbreaks) library(ggplot2) library(incidence) dat <- ebola_sim$linelist$date_of_onset class(dat) head(dat) ## ----incid1------------------------------------------------------------------- i <- incidence(dat) i plot(i) ## ----interv------------------------------------------------------------------- # weekly, starting on Monday (ISO week, default) i.7 <- incidence(dat, interval = "1 week") plot(i.7) # semi-weekly, starting on Saturday i.14 <- incidence(dat, interval = "2 saturday weeks") plot(i.14, border = "white") ## monthly i.month <- incidence(dat, interval = "1 month") plot(i.month, border = "white") ## ----gender------------------------------------------------------------------- i.7.sex <- incidence(dat, interval = "1 week", groups = ebola_sim$linelist$gender) i.7.sex plot(i.7.sex, stack = TRUE, border = "grey") ## ----hosp--------------------------------------------------------------------- i.7.hosp <- with(ebola_sim_clean$linelist, incidence(date_of_onset, interval = "week", groups = hospital)) i.7.hosp head(get_counts(i.7.hosp)) plot(i.7.hosp, stack=TRUE) + theme(legend.position= "top") + labs(fill="") ## ----middle------------------------------------------------------------------- i[100:250] plot(i[100:250]) ## ----stripes------------------------------------------------------------------ i.7[c(TRUE,FALSE)] plot(i.7[c(TRUE,FALSE)]) ## ----tail--------------------------------------------------------------------- i.tail <- subset(i, from=as.Date("2015-01-01")) i.tail plot(i.tail, border="white") ## ----i7outcome---------------------------------------------------------------- i.7.outcome <- incidence(dat, 7, groups=ebola_sim$linelist$outcome) i.7.outcome plot(i.7.outcome, stack = TRUE, border = "grey") ## ----groupsub----------------------------------------------------------------- i.7.outcome[,1:2] plot(i.7.outcome[,1:2], stack = TRUE, border = "grey") ## ----pool--------------------------------------------------------------------- i.pooled <- pool(i.7.outcome) i.pooled identical(i.7$counts, i.pooled$counts) ## ----fit1--------------------------------------------------------------------- plot(i.7[1:20]) early.fit <- fit(i.7[1:20]) early.fit ## ----------------------------------------------------------------------------- plot(early.fit) ## ----------------------------------------------------------------------------- plot(i.7[1:20], fit = early.fit) ## ----fit.both----------------------------------------------------------------- fit.both <- fit(i.7, split=as.Date("2014-10-15")) fit.both plot(i.7, fit=fit.both) ## ----optim-------------------------------------------------------------------- best.fit <- fit_optim_split(i.7) best.fit plot(i.7, fit=best.fit$fit) ## ----get_info----------------------------------------------------------------- get_info(best.fit$fit, "doubling") # doubling time get_info(best.fit$fit, "doubling.conf") # confidence interval get_info(best.fit$fit, "halving") get_info(best.fit$fit, "halving.conf") ## ----optim2------------------------------------------------------------------- best.fit2 <- fit_optim_split(i.7.sex) best.fit2 plot(i.7.sex, fit=best.fit2$fit) ## ----get_info_groups---------------------------------------------------------- get_info(best.fit2$fit, "doubling") # doubling time get_info(best.fit2$fit, "doubling.conf") # confidence interval get_info(best.fit2$fit, "halving") get_info(best.fit2$fit, "halving.conf")