## ----options, echo = FALSE---------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width=7, fig.height=5 ) ## ----data--------------------------------------------------------------------- library(incidence) set.seed(1) dat <- sample(1:50, 200, replace = TRUE, prob = 1 + exp(1:50 * 0.1)) sex <- sample(c("female", "male"), 200, replace = TRUE) ## ----i------------------------------------------------------------------------ i <- incidence(dat, interval = 2) i plot(i) ## ----sex---------------------------------------------------------------------- i.sex <- incidence(dat, interval = 2, group = sex) i.sex plot(i.sex) ## ----names-------------------------------------------------------------------- class(i) is.list(i) names(i) ## ----access------------------------------------------------------------------- ## use name head(i$dates) head(get_dates(i)) ## ----dates1------------------------------------------------------------------- date_bins <- get_dates(i) class(date_bins) class(dat) date_bins ## ----date-dates1-------------------------------------------------------------- dat_Date <- as.Date("2018-10-31") + dat head(dat_Date) i.date <- incidence(dat_Date, interval = 2, group = sex) i.date get_dates(i.date) class(get_dates(i.date)) ## ----get-dates-integer-------------------------------------------------------- get_dates(i.date, count_days = TRUE) get_dates(i, count_days = TRUE) ## ----get-dates-center--------------------------------------------------------- get_dates(i.date, position = "center") get_dates(i.date, position = "center", count_days = TRUE) ## ----counts1------------------------------------------------------------------ counts <- get_counts(i) class(counts) storage.mode(counts) counts get_counts(i.sex) ## ----counts1.1---------------------------------------------------------------- dim(get_counts(i.sex)) dim(i.sex) nrow(i.sex) # number of date bins ncol(i.sex) # number of groups ## ----groups------------------------------------------------------------------- # Number of groups ncol(i.sex) ncol(i) # Names of groups group_names(i.sex) group_names(i) # You can also rename the groups group_names(i.sex) <- c("F", "M") group_names(i.sex) ## ----as.data.frame------------------------------------------------------------ ## basic conversion as.data.frame(i) as.data.frame(i.sex) ## long format for ggplot2 as.data.frame(i.sex, long = TRUE) ## ----timespan----------------------------------------------------------------- get_timespan(i) print(date_range <- range(get_dates(i))) diff(date_range) + 1 ## ----interval----------------------------------------------------------------- get_interval(i) diff(get_dates(i)) ## ----n------------------------------------------------------------------------ get_n(i) ## ----n2----------------------------------------------------------------------- colSums(get_counts(i.sex)) ## ----isoweek------------------------------------------------------------------ library(outbreaks) dat <- ebola_sim$linelist$date_of_onset i.7 <- incidence(dat, "1 epiweek", standard = TRUE) i.7 i.7$weeks ## ----isoweek-null------------------------------------------------------------- i$weeks ## ----isoweek3----------------------------------------------------------------- head(as.data.frame(i.7))