## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.width = 6, fig.asp = 0.618, out.width = "70%", fig.align = "center" ) load(system.file("vignettes/example_niveaux_nappes_api.RData", package = "hubeau")) ## ----------------------------------------------------------------------------- my_water_table_code <- "GG063" ## ----setup-------------------------------------------------------------------- library(hubeau) library(dplyr) library(sf) library(mapview) library(ggplot2) library(purrr) ## ----------------------------------------------------------------------------- list_endpoints(api = "niveaux_nappes") ## ----------------------------------------------------------------------------- list_params(api = "niveaux_nappes", endpoint = "stations") ## ----eval = FALSE------------------------------------------------------------- # stations <- get_niveaux_nappes_stations( # codes_masse_eau_edl = my_water_table_code # ) ## ----------------------------------------------------------------------------- param_chroniques <- paste( list_params(api = "niveaux_nappes", endpoint = "chroniques"), collapse = "," ) ## ----eval = FALSE------------------------------------------------------------- # water_table_level <- map_df( # .x = stations$code_bss, # .f = function(x) # get_niveaux_nappes_chroniques(code_bss = x, # date_debut_mesure = "2015-01-01") # ) ## ----eval = FALSE------------------------------------------------------------- # water_table_level <- water_table_level %>% # mutate(date_mesure = lubridate::ymd(date_mesure), # year = lubridate::year(date_mesure), # month = lubridate::month(date_mesure)) ## ----eval = FALSE------------------------------------------------------------- # yearly_mean_water_table_level <- water_table_level %>% # group_by(code_bss, # year) %>% # summarise(n_months = n_distinct(month)) %>% # filter(n_months == 12) # complete years # # yearly_mean_water_table_level <- yearly_mean_water_table_level %>% # select(-n_months) %>% # left_join(water_table_level) %>% # filtering join # group_by(code_bss, # year, # month) %>% # summarise(monthly_mean_water_table_level = mean(niveau_nappe_eau, na.rm = TRUE)) %>% # group_by(code_bss, # year) %>% # summarise(yearly_mean_water_table_level = mean(monthly_mean_water_table_level, na.rm = TRUE)) %>% # ungroup() ## ----fig.width = 8, fig.height = 8-------------------------------------------- ggplot(data = yearly_mean_water_table_level, aes(x = year, y = yearly_mean_water_table_level)) + geom_line() + facet_wrap(~code_bss, scales = "free_y") ## ----------------------------------------------------------------------------- stations_geo <- stations %>% st_as_sf(coords = c("x", "y"), crs = 4626) ## ----------------------------------------------------------------------------- p <- lapply(unique(yearly_mean_water_table_level$code_bss), function(x) { ggplot(data = yearly_mean_water_table_level %>% filter(code_bss == x), aes(x = year, y = yearly_mean_water_table_level)) + geom_line() + labs(title = x) }) ## ----out.width = "100%", fig.asp = 1------------------------------------------ mapview( stations_geo, map.types = c("OpenStreetMap", "Esri.WorldShadedRelief", "OpenTopoMap"), popup = leafpop::popupGraph(p) )