
Package ‘httptest2’
June 27, 2025

Type Package

Title Test Helpers for 'httr2'

Description Testing and documenting code that communicates with remote servers
can be painful. This package helps with writing tests for packages that
use 'httr2'. It enables testing all of the logic
on the R sides of the API without requiring access to the
remote service, and it also allows recording real API responses to use as
test fixtures. The ability to save responses and load them offline also
enables writing vignettes and other dynamic documents that can be
distributed without access to a live server.

Version 1.2.0

URL https://enpiar.com/httptest2/,

https://github.com/nealrichardson/httptest2

BugReports https://github.com/nealrichardson/httptest2/issues

License MIT + file LICENSE

Imports digest, httr2, jsonlite, rlang, stats, testthat, utils

Suggests curl, knitr, pkgload, rmarkdown, spelling, webfakes, xml2

Language en-US

RoxygenNote 7.3.2

Encoding UTF-8

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Neal Richardson [aut, cre] (ORCID:
<https://orcid.org/0009-0002-7992-3520>),

Jonathan Keane [ctb],
Maëlle Salmon [ctb] (ORCID: <https://orcid.org/0000-0002-2815-0399>)

Maintainer Neal Richardson <neal.p.richardson@gmail.com>

Repository CRAN

Date/Publication 2025-06-27 19:20:02 UTC

1

https://enpiar.com/httptest2/
https://github.com/nealrichardson/httptest2
https://github.com/nealrichardson/httptest2/issues
https://orcid.org/0009-0002-7992-3520
https://orcid.org/0000-0002-2815-0399

2 .mockPaths

Contents
.mockPaths . 2
capture_requests . 3
change_state . 4
expect_request_header . 5
expect_verb . 6
gsub_response . 8
redact . 9
set_redactor . 10
start_vignette . 11
use_httptest2 . 12
without_internet . 12
with_mock_api . 13
with_mock_dir . 14

Index 16

.mockPaths Set an alternate directory for mock API fixtures

Description

By default, with_mock_api() will look for and capture_requests() will write mocks to your
package’s tests/testthat directory, or else the current working directory if that path does not
exist. If you want to look in or write to other places, call .mockPaths() to add directories to the
search path.

Usage

.mockPaths(new)

Arguments

new Either a character vector of path(s) to add, or NULL to reset to the default.

Details

It works like base::.libPaths(): any directories you specify will be added to the list and searched
first. The default directory will be searched last. Only unique values are kept: if you provide a path
that is already found in .mockPaths(), the result effectively moves that path to the first position.

For finer-grained control, or to completely override the default behavior of searching in the current
working directory, you can set the option "httptest2.mock.paths" directly.

Value

If new is omitted, the function returns the current search paths, a a character vector. If new is
provided, the updated value will be returned invisibly.

capture_requests 3

Examples

.mockPaths()

.mockPaths("/var/somewhere/else")

.mockPaths()

.mockPaths(NULL)

.mockPaths()

capture_requests Record API responses as mock files

Description

capture_requests() is a context that collects the responses from requests you make and stores
them as mock files. This enables you to perform a series of requests against a live server once and
then build your test suite using those mocks, running your tests in with_mock_api().

Usage

capture_requests(expr, simplify = TRUE)

start_capturing(simplify = TRUE)

stop_capturing()

Arguments

expr Code to run inside the context

simplify logical: if TRUE (default), plain-text responses with status 200 will be written
as just the text of the response body. In all other cases, and when simplify
is FALSE, the httr2_response object will be written out to a .R file using
base::dput().

Details

start_capturing() and stop_capturing() allow you to turn on/off request recording for more
convenient use in an interactive session.

Recorded responses are written out as plain-text files. By storing fixtures as plain-text files, you can
more easily confirm that your mocks look correct, and you can more easily maintain them without
having to re-record them. If the API changes subtly, such as when adding an additional attribute to
an object, you can just touch up the mocks.

If the response has status 200 OK and the Content-Type maps to a supported file extension—
currently .json, .html, .xml, .txt, .csv, and .tsv—just the response body will be written out,
using the appropriate extension. 204 No Content status responses will be stored as an empty file
with extension .204. Otherwise, the response will be written as a .R file containing syntax that,
when executed, recreates the httr2_response object.

4 change_state

Files are saved to the first directory in .mockPaths(), which if not otherwise specified is either
"tests/testthat" if it exists (as it should if you are in the root directory of your package), else the
current working directory. If you have trouble when recording responses, or are unsure where the
files are being written, set options(httptest2.verbose = TRUE) to print a message for every file
that is written containing the absolute path of the file.

Value

capture_requests() returns the result of expr. start_capturing() invisibly returns the desti-
nation directory. stop_capturing() returns nothing; it is called for its side effects.

See Also

build_mock_url() for how requests are translated to file paths. And see vignette("redacting",
package = "httptest2") for details on how to prune sensitive content from responses when record-
ing.

Examples

Setup so that our examples clean up after themselves
tmp <- tempfile()
.mockPaths(tmp)
on.exit(unlink(tmp, recursive = TRUE))

library(httr2)
capture_requests({

request("http://httpbin.org/get") %>% req_perform()
request("http://httpbin.org/response-headers") %>%

req_headers(`Content-Type` = "application/json") %>%
req_perform()

})
Or:
start_capturing()
request("http://httpbin.org/get") %>% req_perform()
request("http://httpbin.org/response-headers") %>%

req_headers(`Content-Type` = "application/json") %>%
req_perform()

stop_capturing()

change_state Handle a change of server state

Description

In a vignette, put a call to change_state() before any code block that makes a change on the
server, or rather, before any code block that might repeat the same request previously done and
expect a different result.

expect_request_header 5

Usage

change_state()

Details

change_state() works by layering a new directory on top of the existing .mockPaths(), so fix-
tures are recorded/loaded there, masking rather than overwriting previously recorded responses for
the same request. In vignettes, these mock layers are subdirectories with integer names.

Value

Invisibly, the return of .mockPaths() with the new path added.

See Also

start_vignette(); vignette("vignettes", package = "httptest2") for an overview of all

expect_request_header Test that an HTTP request is made with a header

Description

This expectation checks that HTTP headers (and potentially header values) are present in a request.
It works both in the mock HTTP contexts and on "live" HTTP requests.

Usage

expect_request_header(
expr,
...,
fixed = FALSE,
ignore.case = FALSE,
perl = FALSE,
useBytes = FALSE

)

Arguments

expr Code to evaluate

... Named headers to match. Values should either be a string (length-1 character),
which will be passed to testthat::expect_match(), or NULL to assert that the
named header is not present in the request. To assert that a header is merely
present in the request, without asserting anything about its contents, provide an
empty string (""). Header names are always case-insensitive; header values will
be matched using the following parameters:

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all conflicting
arguments.

6 expect_verb

ignore.case logical. if FALSE, the pattern matching is case sensitive and if TRUE, case is
ignored during matching.

perl logical. Should Perl-compatible regexps be used?

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

Value

The value of expr if there are no expectation failures

Examples

library(httr2)
expect_request_header(

request("http://httpbin.org") %>%
req_headers(Accept = "image/png") %>%
req_perform(),

accept = "image/png",
`x-fake-header` = NULL

)
expect_request_header(

request("http://httpbin.org") %>%
req_headers(Accept = "image/png") %>%
req_perform(),

accept = ""
)

expect_verb Expectations for mocked HTTP requests

Description

The mock contexts in httptest2 can raise errors or messages when requests are made, and those
(error) messages have three elements, separated by space: (1) the request method (e.g. "GET"); (2)
the request URL; and (3) the request body, if present. These verb-expectation functions look for
this message shape. expect_PUT, for instance, looks for a request message that starts with "PUT".

Usage

expect_GET(object, url = "", ...)

expect_POST(object, url = "", ...)

expect_PATCH(object, url = "", ...)

expect_PUT(object, url = "", ...)

expect_verb 7

expect_DELETE(object, url = "", ...)

expect_no_request(object, ...)

Arguments

object Code to execute that may cause an HTTP request

url character: the URL you expect a request to be made to. Default is an empty
string, meaning that you can just assert that a request is made with a certain
method without asserting anything further.

... character segments of a request payload you expect to be included in the request
body, to be joined together by paste0(). You may also pass any of the following
named logical arguments, which will be passed to base::grepl():

• fixed: Should matching take the pattern as is or treat it as a regular expres-
sion. Default: TRUE, and note that this default is the opposite of the default
in grepl. (The rest of the arguments follow its defaults.)

• ignore.case: Should matching be done case insensitively? Default: FALSE,
meaning matches are case sensitive.

• perl: Should Perl-compatible regular expressions be used? Default: FALSE
• useBytes: Should matching be done byte-by-byte rather than character-by-

character? Default: FALSE

Value

A testthat ’expectation’.

Examples

library(httr2)
without_internet({

expect_GET(
request("http://httpbin.org/get") %>% req_perform(),
"http://httpbin.org/get"

)
expect_GET(

request("http://httpbin.org/get") %>% req_perform(),
"http://httpbin.org/[a-z]+",
fixed = FALSE # For regular expression matching

)
expect_PUT(

request("http://httpbin.org/put") %>%
req_method("PUT") %>%
req_body_json(list(a = 1)) %>%
req_perform(),

"http://httpbin.org/put",
'{"a":1}'

)
Don't need to assert the request body, or even the URL
expect_PUT(

8 gsub_response

request("http://httpbin.org/put") %>%
req_method("PUT") %>%
req_body_json(list(a = 1)) %>%
req_perform()

)
expect_no_request(rnorm(5))

})

gsub_response Find and replace within a response object

Description

This function passes its arguments to base::gsub() in order to find and replace string patterns
(regular expressions) within the URL and the response body of httr2_response objects.

Usage

gsub_response(response, pattern, replacement, ...)

Arguments

response An httr2_response or http2_request object to sanitize.

pattern From base::gsub(): "character string containing a regular expression (or char-
acter string for fixed = TRUE) to be matched in the given character vector."
Passed to gsub(). See the docs for gsub() for further details.

replacement A replacement for the matched pattern, possibly including regular expression
backreferences. Passed to gsub(). See the docs for gsub() for further details.

... Additional logical arguments passed to gsub(): ignore.case, perl, fixed,
and useBytes are the possible options.

Details

Note that, unlike gsub(), the first argument of the function is response, not pattern, while the
equivalent argument in gsub(), "x", is placed third. This difference is to maintain consistency with
the other redactor functions in httptest2, which all take response as the first argument.

This function also can be applied to an http2_request object to replace patterns inside the request
URL.

Value

An httr2_response object, same as was passed in, with the pattern replaced in the URLs and
bodies.

redact 9

redact Remove sensitive content from HTTP responses

Description

When recording requests for use as test fixtures, you don’t want to include secrets like authentication
tokens and personal ids. These functions provide a means for redacting this kind of content, or
anything you want, from responses that capture_requests() saves.

Usage

redact_cookies(response)

redact_headers(response, headers = c())

within_body_text(response, FUN)

Arguments

response An httr2_response or httr2_request object to sanitize.

headers For redact_headers(), a character vector of header names to sanitize.

FUN For within_body_text(), a function that takes as its argument a character vec-
tor and returns a modified version of that. This function will be applied to the
text of the response’s body.

Details

redact_cookies() removes cookies from httr2_response objects and is the default redactor in
capture_requests(). redact_headers() lets you target selected request and response headers
for redaction. within_body_text() lets you manipulate the text of the response body and manages
the parsing of the raw (binary) data in the httr_response object.

Note that if you set a redacting function, it will also be applied to requests when loading mocks.
This allows you to sanitize and/or shorten URLs in your mock files.

Value

All redacting functions return a well-formed httr2_response or httr2_request object.

See Also

vignette("redacting", package = "httptest2") for a detailed discussion of what these func-
tions do and how to customize them. gsub_response() is another redactor.

10 set_redactor

set_redactor Set a response redactor

Description

A redactor is a function that alters the response content being written out in the capture_requests()
context, allowing you to remove sensitive values, such as authentication tokens, as well as any other
modification or truncation of the response body. By default, the redact_cookies() function will
be used to purge standard auth methods, but set_redactor() allows you to provide a different one.

Usage

set_redactor(FUN)

Arguments

FUN A function or expression that modifies httr2_response objects. Specifically, a
valid input is one of:

• A function taking a single argument, the httr2_response, and returning a
valid httr2_response object.

• A formula as shorthand for an anonymous function with . as the "response"
argument, as in the purrr package. That is, instead of function (response)
redact_headers(response, "X-Custom-Header"), you can use ~ redact_headers(.,
"X-Custom-Header")

• A list of redacting functions/formulas, which will be executed in sequence
on the response

• NULL, to override the default redact_cookies().

Details

Alternatively, you can put a redacting function in inst/httptest2/redact.R in your package, and
any time your package is loaded (as in when running tests or building vignettes), the function will
be used automatically.

Value

Invisibly, the redacting function, validated and perhaps modified. Formulas and function lists are
turned into proper functions. NULL as input returns the force() function.

See Also

For further details on how to redact responses, see vignette("redacting", package = "httptest2").

start_vignette 11

Examples

Shorten UUIDs in response body/URLs to their first 6 digits:
set_redactor(function(resp) gsub_response(resp, "([0-9a-f]{6})[0-9a-f]{26}", "\\1"))
Restore the default
set_redactor(redact_cookies)

start_vignette Set mocking/capturing state for a vignette

Description

Use start_vignette() to either use previously recorded responses, if they exist, or capture real
responses for future use.

Usage

start_vignette(dir, ...)

end_vignette()

Arguments

dir Root file path for the mocks for this vignette. A good idea is to use the file name
of the vignette itself.

... Optional arguments passed to start_capturing()

Details

In a vignette or other R Markdown or Sweave document, place start_vignette() in an R code
block at the beginning, before the first API request is made, and put end_vignette() in a R code
chunk at the end. You may want to make those R code chunks have echo=FALSE in order to hide
the fact that you’re calling them.

As in with_mock_dir(), the behavior changes based on the existence of the dir directory. The first
time you build the vignette, the directory won’t exist yet, so it will make real requests and record
them inside of dir. On subsequent runs, the mocks will be used. To record fresh responses from the
server, delete the dir directory, and the responses will be recorded again the next time the vignette
runs.

If you have additional setup code that you’d like available across all of your package’s vignettes, put
it in inst/httptest2/start-vignette.R in your package, and it will be called in start_vignette()
before the mock/record context is set. Similarly, teardown code can go in inst/httptest2/end-vignette.R,
evaluated in end_vignette() after mocking is stopped.

Value

Nothing; called for its side effect of starting/ending response recording or mocking.

12 without_internet

See Also

start_capturing() for how requests are recorded; use_mock_api() for how previously recorded
requests are loaded; change_state() for how to handle recorded requests when the server state is
changing; vignette("vignettes", package = "httptest2") for an overview of all

use_httptest2 Use ’httptest2’ in your tests

Description

This function adds httptest2 to Suggests in the package DESCRIPTION and loads it in tests/testthat/setup.R.
Call it once when you’re setting up a new package test suite.

Usage

use_httptest2(path = ".")

Arguments

path character path to the package

Details

The function is idempotent: if httptest2 is already added to these files, no additional changes will
be made.

Value

Nothing: called for file system side effects.

without_internet Make all HTTP requests raise an error

Description

without_internet() simulates the situation when any network request will fail, as in when you
are without an internet connection. Any HTTP request through httr2 will raise an error.

Usage

without_internet(expr)

block_requests()

with_mock_api 13

Arguments

expr Code to run inside the mock context

Details

block_requests() and stop_mocking() allow you to turn on/off request blocking for more con-
venient use in an interactive session.
The error message raised has a well-defined shape, made of three elements, separated by space: (1)
the request method (e.g. "GET"); (2) the request URL; and (3) the request body, if present. The
verb-expectation functions, such as expect_GET() and expect_POST(), look for this shape.

Value

The result of expr

Examples

library(httr2)
library(testthat, warn.conflicts = FALSE)
without_internet({

expect_error(
request("http://httpbin.org/get") %>% req_perform(),
"GET http://httpbin.org/get"

)
expect_error(

request("http://httpbin.org/put") %>%
req_method("PUT") %>%
req_body_json(list(a = 1)) %>%
req_perform(),

'PUT http://httpbin.org/put {"a":1}',
fixed = TRUE

)
})

with_mock_api Serve a mock API from files

Description

In this context, HTTP requests attempt to load API response fixtures from files. This allows test code
to proceed evaluating code that expects HTTP requests to return meaningful responses. Requests
that do not have a corresponding fixture file raise errors, like how without_internet() does.

Usage

with_mock_api(expr)

use_mock_api()

stop_mocking()

14 with_mock_dir

Arguments

expr Code to run inside the mock context

Details

use_mock_api() and stop_mocking() allow you to turn on/off request mocking for more conve-
nient use in an interactive session.

Requests are translated to mock file paths according to several rules that incorporate the request
method, URL, query parameters, and body. See build_mock_url() for details.

File paths for API fixture files may be relative to the ’tests/testthat’ directory, i.e. relative to the .R
test files themselves. This is the default location for storing and retrieving mocks, but you can put
them anywhere you want as long as you set the appropriate location with .mockPaths().

Value

with_mock_api() returns the result of expr. use_mock_api() and stop_mocking() return noth-
ing.

Examples

library(httr2)
with_mock_api({

There are no mocks recorded in this example, so catch this request with
expect_GET()
expect_GET(
request("https://cran.r-project.org") %>% req_perform(),
"https://cran.r-project.org"

)
For examples with mocks, see the tests and vignettes

})

with_mock_dir Use or create mock files depending on their existence

Description

This context will switch the .mockPaths() to tests/testthat/dir (and then resets it to what it
was before). If the tests/testthat/dir folder doesn’t exist, capture_requests() will be run
to create mocks. If it exists, with_mock_api() will be run. To re-record mock files, simply delete
tests/testthat/dir and run the test.

Usage

with_mock_dir(dir, expr, simplify = TRUE, replace = TRUE)

with_mock_dir 15

Arguments

dir character string, unique folder name that will be used or created under tests/testthat/

expr Code to run inside the context

simplify logical: if TRUE (default), plain-text responses with status 200 will be written
as just the text of the response body. In all other cases, and when simplify
is FALSE, the httr2_response object will be written out to a .R file using
base::dput().

replace Logical: should dir replace the contents of .mockPaths() (default) or be added
in front of the existing paths? The default behavior here is the opposite of
.mockPaths() so that the tests inside of with_mock_dir() are fully isolated.

See Also

vignette("httptest2") for usage examples.

Index

.mockPaths, 2

.mockPaths(), 4, 5, 14

base::.libPaths(), 2
base::dput(), 3, 15
base::grepl(), 7
base::gsub(), 8
block_requests (without_internet), 12
build_mock_url(), 4, 14

capture_requests, 3
capture_requests(), 9, 10, 14
change_state, 4
change_state(), 12

end_vignette (start_vignette), 11
expect_DELETE (expect_verb), 6
expect_GET (expect_verb), 6
expect_GET(), 13
expect_no_request (expect_verb), 6
expect_PATCH (expect_verb), 6
expect_POST (expect_verb), 6
expect_POST(), 13
expect_PUT (expect_verb), 6
expect_request_header, 5
expect_verb, 6

gsub_response, 8
gsub_response(), 9

redact, 9
redact_cookies (redact), 9
redact_cookies(), 10
redact_headers (redact), 9

set_redactor, 10
start_capturing (capture_requests), 3
start_capturing(), 12
start_vignette, 11
start_vignette(), 5
stop_capturing (capture_requests), 3

stop_mocking (with_mock_api), 13

testthat::expect_match(), 5

use_httptest2, 12
use_mock_api (with_mock_api), 13
use_mock_api(), 12

with_mock_api, 13
with_mock_api(), 3, 14
with_mock_dir, 14
with_mock_dir(), 11
within_body_text (redact), 9
without_internet, 12
without_internet(), 13

16

	.mockPaths
	capture_requests
	change_state
	expect_request_header
	expect_verb
	gsub_response
	redact
	set_redactor
	start_vignette
	use_httptest2
	without_internet
	with_mock_api
	with_mock_dir
	Index

