## ----------------------------------------------------------------------------- library(heuristica) ## ----------------------------------------------------------------------------- schools <- data.frame(Name=c("Bowen", "Collins", "Fenger", "Juarez", "Young"), Dropout_Rate=c(25.5, 11.8, 28.7, 21.6, 4.5), Low_Income_Students=c(82.5, 88.8, 63.2, 84.5, 30.3), Limited_English_Students=c(11.4, 0.1, 0, 28.3, 0.1)) schools ## ----------------------------------------------------------------------------- criterion_col <- 2 ttb <- ttbModel(schools, criterion_col, c(3:4)) reg <- regModel(schools, criterion_col, c(3:4)) ## ----------------------------------------------------------------------------- ttb$cue_validities coef(reg) ## ----------------------------------------------------------------------------- predictPair(subset(schools, Name=="Bowen"), subset(schools, Name=="Collins"), ttb) predictPair(subset(schools, Name=="Bowen"), subset(schools, Name=="Fenger"), ttb) ## ----------------------------------------------------------------------------- predictPair(subset(schools, Name=="Collins"), subset(schools, Name=="Bowen"), ttb) ## ----------------------------------------------------------------------------- out <- predictPairSummary(schools, ttb, reg) # See the first row: It has row indexes. out[1,] # Convert indexes to school names for easier interpretation out_df <- data.frame(out) out_df$Row1 <- schools$Name[out_df$Row1] out_df$Row2 <- schools$Name[out_df$Row2] out_df ## ----------------------------------------------------------------------------- # Same as predictPairSummary. out_same <- rowPairApply(schools, rowIndexes(), correctGreater(criterion_col), heuristics(ttb, reg)) out_same[1,] # Show first the heuristic predictions, then CorrectGreater. No row indexes. out_simple <- rowPairApply(schools, heuristics(ttb, reg), correctGreater(criterion_col)) out_simple[1,] ## ----------------------------------------------------------------------------- percentCorrect(schools, ttb, reg)