## ----setup, include = FALSE---------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ------------------------------------------------------------------------ library(hdqr) set.seed(315) n <- 100 p <- 400 x <- matrix(data = rnorm(n * p, mean = 0, sd = 1), nrow = n, ncol = p) beta_star <- c(c(2, 1.5, 0.8, 1, 1.75, 0.75, 0.3), rep(0, (p - 7))) eps <- rnorm(n, mean = 0, sd = 1) y <- x %*% beta_star + eps ## ------------------------------------------------------------------------ lambda <- 10^(seq(1, -4, length.out=30)) lam2 <- 0.01 tau <- 0.5 fit <- hdqr(x, y, lambda=lambda, lam2=lam2, tau=tau) ## ------------------------------------------------------------------------ cv.fit <- cv.hdqr(x, y, lambda=lambda, tau=tau) ## ------------------------------------------------------------------------ nc.fit <- nc.hdqr(x=x, y=y, tau=tau, lambda=lambda, lam2=lam2, pen="scad") ## ------------------------------------------------------------------------ cv.nc.fit <- cv.nc.hdqr(y=y, x=x, tau=tau, lambda=lambda, lam2=lam2, pen="scad") ## ------------------------------------------------------------------------ coefs <- coef(fit, s = fit$lambda[3:5]) preds <- predict(fit, newx = tail(x), s = fit$lambda[3:5]) cv.coefs <- coef(cv.fit, s = c(0.02, 0.03)) cv.preds <- predict(cv.fit, newx = x[50:60, ], s = "lambda.min") nc.coefs <- coef(nc.fit, s = nc.fit$lambda[3:5]) nc.preds <- predict(nc.fit, newx = tail(x), s = fit$lambda[3:5]) cv.nc.coefs <- coef(cv.nc.fit, s = c(0.02, 0.03)) cv.nc.preds <- predict(cv.nc.fit, newx = x[50:60, ], s = "lambda.min")