## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- library(hbsaems) ## ----------------------------------------------------------------------------- data <- data_fhnorm head(data) ## ----------------------------------------------------------------------------- model_prior_pred <- hbm( formula = bf(y ~ x1 + x2 + x3), data = data, hb_sampling = "gaussian", hb_link = "log", chains = 4, iter = 500, warmup = 250, sample_prior = "only", prior = c( prior("normal(1, 0.2)", class = "Intercept"), prior("normal(0, 0.1)", class = "b"), prior("exponential(5)", class = "sd") ) ) ## ----------------------------------------------------------------------------- summary(model_prior_pred) ## ----------------------------------------------------------------------------- result_hbpc <- hbpc(model_prior_pred) summary(result_hbpc) ## ----------------------------------------------------------------------------- result_hbpc$prior_predictive_plot ## ----------------------------------------------------------------------------- model <- hbm( formula = bf(y ~ x1 + x2 + x3), data = data, hb_sampling = "gaussian", hb_link = "log", chains = 4, iter = 500, warmup = 250, sample_prior = "no", prior = c( prior("normal(1, 0.2)", class = "Intercept"), prior("normal(0, 0.1)", class = "b"), prior("exponential(5)", class = "sd") ) ) ## ----------------------------------------------------------------------------- summary(model) ## ----------------------------------------------------------------------------- result_hbcc <- hbcc(model) summary(result_hbcc) ## ----------------------------------------------------------------------------- result_hbcc <- hbcc(model) summary(result_hbcc) ## ----------------------------------------------------------------------------- result_hbcc$plots$trace ## ----------------------------------------------------------------------------- result_hbcc$plots$dens ## ----------------------------------------------------------------------------- result_hbcc$plots$acf ## ----------------------------------------------------------------------------- result_hbcc$plots$nuts_energy ## ----------------------------------------------------------------------------- result_hbcc$plots$rhat ## ----------------------------------------------------------------------------- result_hbcc$plots$neff ## ----------------------------------------------------------------------------- result_hbmc <- hbmc( model = list(model), comparison_metrics = c("loo", "waic", "bf"), run_prior_sensitivity= TRUE, sensitivity_vars = c("b_Intercept", "b_x1") ) summary(result_hbmc) ## ----------------------------------------------------------------------------- result_hbmc$primary_model_diagnostics$pp_check_plot ## ----------------------------------------------------------------------------- result_hbmc$primary_model_diagnostics$params_plot ## ----------------------------------------------------------------------------- result_hbsae <- hbsae(model) summary(result_hbsae)