## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----eval = FALSE------------------------------------------------------------- # library(gimap) # library(dplyr) ## ----eval = FALSE------------------------------------------------------------- # example_data <- get_example_data("count_treatment") ## ----eval = FALSE------------------------------------------------------------- # colnames(example_data) ## ----eval = FALSE------------------------------------------------------------- # counts <- example_data %>% # select(c("pretreatment", "dmsoA", "dmsoB", "drug1A", "drug1B")) %>% # as.matrix() ## ----eval = FALSE------------------------------------------------------------- # pg_ids <- example_data %>% # dplyr::select("id") ## ----eval = FALSE------------------------------------------------------------- # sample_metadata <- data.frame( # col_names = c("pretreatment", "dmsoA", "dmsoB", "drug1A", "drug1B"), # drug_treatment = as.factor(c("pretreatment", "dmso", "dmso", "drug", "drug")) # ) ## ----eval = FALSE------------------------------------------------------------- # gimap_dataset <- setup_data( # counts = counts, # pg_ids = pg_ids, # sample_metadata = sample_metadata # ) ## ----eval = FALSE------------------------------------------------------------- # str(gimap_dataset) ## ----eval = FALSE------------------------------------------------------------- # nrow(gimap_dataset$transformed_data$log2_cpm) ## ----eval = FALSE------------------------------------------------------------- # gimap_filtered <- gimap_dataset %>% # gimap_filter() ## ----eval = FALSE------------------------------------------------------------- # nrow(gimap_filtered$filtered_data$transformed_log2_cpm) ## ----eval = FALSE------------------------------------------------------------- # str(gimap_filtered$filtered_data) ## ----eval = FALSE------------------------------------------------------------- # nrow(gimap_filtered$filtered_data$transformed_log2_cpm) ## ----eval = FALSE------------------------------------------------------------- # gimap_dataset <- gimap_filtered %>% # gimap_annotate(cell_line = "PC9") %>% # # Whatever is specified for "control_name" is what will be used to normalize other data points # gimap_normalize( # treatments = "drug_treatment", # control_name = "pretreatment" # ) %>% # calc_gi() ## ----eval = FALSE------------------------------------------------------------- # head(gimap_dataset$gi_scores) ## ----eval = FALSE------------------------------------------------------------- # head(dplyr::arrange(gimap_dataset$gi_score, fdr)) ## ----eval = FALSE------------------------------------------------------------- # plot_exp_v_obs_scatter(gimap_dataset) ## ----eval = FALSE------------------------------------------------------------- # plot_rank_scatter(gimap_dataset) ## ----eval = FALSE------------------------------------------------------------- # plot_volcano(gimap_dataset) ## ----eval = FALSE------------------------------------------------------------- # # "MED12L_MED12" is top result so let's plot that # plot_targets_bar(gimap_dataset, target1 = "AP2A1", target2 = "AP2A2") ## ----eval = FALSE------------------------------------------------------------- # # To plot results, pick out two targets from the gi_score table # head(dplyr::arrange(gimap_dataset$gi_score, fdr)) # # # "NDEL1_NDE1" is top result so let's plot that # plot_targets_bar(gimap_dataset, target1 = "NDEL1", target2 = "NDE1") ## ----eval = FALSE------------------------------------------------------------- # sessionInfo()