## ---- include = FALSE--------------------------------------------------------- library(fcirt) knitr::opts_chunk$set( collapse = TRUE, comment = "#>", fig.align = "center", fig.height = 4, fig.width = 6 ) ## ---- echo=FALSE-------------------------------------------------------------- # Response data #>fcirt.Data <- c(1,0,0,1,1,1,1,1,1,1,0,1,1,0,1,1,0,0,0,0,0,0,1,1,1,0,1,1,1,1,0,1,1,1,0,1,1,0,1,1) #>fcirt.Data <- matrix(fcirt.Data,nrow = 10) ## ---- echo=FALSE-------------------------------------------------------------- # pairmap #>pairmap <- c(1,3,5,7,2,4,6,8) #>pairmap <- matrix(pairmap,ncol = 2) ## ---- echo=FALSE-------------------------------------------------------------- # ind #>ind <- c(1,2,1,2,1,2,2,1) ## ---- echo=FALSE-------------------------------------------------------------- # ParInits #>ParInits <- c(1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1) #>ParInits <- matrix(ParInits, ncol = 3) ## ---- warning = FALSE--------------------------------------------------------- # Fit the MUPP model #>mod <- fcirt(fcirt.Data=fcirt.Data, pairmap=pairmap, ind=ind, ParInits=ParInits, iter=100) #>mod ## ----------------------------------------------------------------------------- # Extract theta estimates #>theta <- extract(x=mod, pars='theta') # Turn theta estimates into p*trait matrix where p equals sample size and trait equals the number of latent traits #>theta <- theta[,1] # nrow=trait #>theta <- matrix(theta, nrow=2) #>theta <- t(theta) # theta estimates in p*trait matrix format #>theta # Extract tau estimates #>tau <- extract(x=mod, pars='tau') #>tau <- tau[,1] #>tau ## ----------------------------------------------------------------------------- # Obtain density plots for all alphas. #>bayesplot(x=mod, pars='alpha', plot='density', inc_warmup=FALSE) ## ----------------------------------------------------------------------------- # Obtain the trace plots for all alphas. #>bayesplot(x=mod, pars='alpha', plot='trace', inc_warmup=FALSE) ## ----------------------------------------------------------------------------- # Obtain item information for item 1-3. #>OII <- information(x=mod, approach="direct", information="item", items=1:3) #>OII ## ----------------------------------------------------------------------------- # Obtain test information. #>OTI <- information(x=mod, approach="direct", information="test") #>OTI