For our analysis we are going to use the
datasets::EuStockMarkets dataset, which contains the daily
closing prices of four major European stock indices: Germany DAX,
Switzerland SMI, France CAC, and UK FTSE (see
?EuStockMarkets). The data are sampled in business time,
i.e., weekends and holidays are omitted. In this particular exercise we
want to focus on weekly observations. To do so we aggregate to a weekly
frequency and reduce the number of observations from 1860 to 372.
We estimate the above series using the recursive Augmented Dickey-Fuller test with 1 lag.
The summary will print the test statistic and the critical values for
10%, 5% and 1% significance level. The package provides simulated
critical values for up to 600 observations, so we use them by omitting
the cv argument in the summary function.
summary(est_stocks)
#> 
#> ── Summary (minw = 38, lag = 1) ─────────────────── Monte Carlo (nrep = 2000) ──
#> 
#> DAX :
#> # A tibble: 3 × 5
#>   stat  tstat   `90`    `95`  `99`
#>   <fct> <dbl>  <dbl>   <dbl> <dbl>
#> 1 adf    1.45 -0.437 -0.0900 0.511
#> 2 sadf   4.95  1.14   1.42   2.04 
#> 3 gsadf  5.18  1.90   2.14   2.60 
#> 
#> SMI :
#> # A tibble: 3 × 5
#>   stat  tstat   `90`    `95`  `99`
#>   <fct> <dbl>  <dbl>   <dbl> <dbl>
#> 1 adf    1.77 -0.437 -0.0900 0.511
#> 2 sadf   4.28  1.14   1.42   2.04 
#> 3 gsadf  4.49  1.90   2.14   2.60 
#> 
#> CAC :
#> # A tibble: 3 × 5
#>   stat  tstat   `90`    `95`  `99`
#>   <fct> <dbl>  <dbl>   <dbl> <dbl>
#> 1 adf   0.987 -0.437 -0.0900 0.511
#> 2 sadf  2.91   1.14   1.42   2.04 
#> 3 gsadf 2.97   1.90   2.14   2.60 
#> 
#> FTSE :
#> # A tibble: 3 × 5
#>   stat  tstat   `90`    `95`  `99`
#>   <fct> <dbl>  <dbl>   <dbl> <dbl>
#> 1 adf   0.194 -0.437 -0.0900 0.511
#> 2 sadf  2.56   1.14   1.42   2.04 
#> 3 gsadf 2.67   1.90   2.14   2.60It seems that all stocks exhibit exuberant behaviour but we can also
verify it using diagnostics(). This function is
particularly useful when we deal a large number of series.
diagnostics(est_stocks)
#> 
#> ── Diagnostics (option = gsadf) ───────────────────────────────── Monte Carlo ──
#> 
#> DAX:      Rejects H0 at the 1% significance level
#> SMI:      Rejects H0 at the 1% significance level
#> CAC:      Rejects H0 at the 1% significance level
#> FTSE:     Rejects H0 at the 1% significance levelIf we need to know the exact period of exuberance we can do so with
the function datestamp(). datestamp() works in
a similar manner with summary() and
diagnostics(). The user still has to specify the critical
values, however we can still utilize the package’s critical values by
leaving the cv-argument blank.
# Minimum duration of an explosive period 
rot = psy_ds(stocks) # log(n) ~ rule of thumb
dstamp_stocks <- datestamp(est_stocks, min_duration = rot)
dstamp_stocks
#> 
#> ── Datestamp (min_duration = 6) ───────────────────────────────── Monte Carlo ──
#> 
#> DAX :
#>        Start       Peak        End Duration   Signal Ongoing
#> 1 1997-02-10 1997-08-05 1997-11-04       38 positive   FALSE
#> 2 1998-01-27 1998-07-22 1998-08-19       30 positive    TRUE
#> 
#> SMI :
#>        Start       Peak        End Duration   Signal Ongoing
#> 1 1993-12-02 1994-02-03 1994-02-17       11 positive   FALSE
#> 2 1997-04-14 1997-07-15 1997-09-02       20 positive   FALSE
#> 3 1997-09-09 1997-10-07 1997-11-04        8 positive   FALSE
#> 4 1997-11-25 1998-04-07 1998-08-19       39 positive    TRUE
#> 
#> CAC :
#>        Start       Peak        End Duration   Signal Ongoing
#> 1 1997-07-08 1997-08-05 1997-08-19        6 positive   FALSE
#> 2 1998-03-10 1998-07-15 1998-08-12       22 positive   FALSE
#> 
#> FTSE :
#>        Start       Peak        End Duration   Signal Ongoing
#> 1 1997-07-08 1997-10-07 1997-11-04       17 positive   FALSE
#> 2 1998-02-10 1998-04-14 1998-06-24       19 positive   FALSEWe can extract the datestamp as a dummy variable 1 = Exuberance, 0 = No exuberance.
The autoplot function returns a faceted ggplot2 object
for all the series that reject the null hypothesis at 5% significance
level.
Finally, we can plot just the periods the periods of exuberance. Plotting datestamp object is particularly useful when we have a lot of series, and we are interested to identify explosive patterns in all of them.