| Type: | Package | 
| Title: | An Empirical Model for Underdispersed Count Data | 
| Version: | 0.1.2 | 
| Description: | Count regression models for underdispersed small counts (lambda < 20) based on the three-parameter exponentially weighted Poisson distribution of Ridout & Besbeas (2004) <doi:10.1191/1471082X04st064oa>. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 7.3.2 | 
| Depends: | R (≥ 2.10) | 
| LinkingTo: | BH, Rcpp | 
| Imports: | Rcpp, mvtnorm | 
| Suggests: | covr, DHARMa, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| NeedsCompilation: | yes | 
| Packaged: | 2025-04-22 11:05:05 UTC; philipp.boerschsupan | 
| Author: | Philipp Boersch-Supan | 
| Maintainer: | Philipp Boersch-Supan <pboesu@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-04-22 11:20:02 UTC | 
Extract coefficients
Description
Extract coefficients
Usage
## S3 method for class 'ewp'
coef(object, ...)
Arguments
| object | an object of class ewp | 
| ... | ignored | 
Value
a vector of coefficient values. Beware that the lambda parameters are on the log-link scale, whereas the betas are estimated using an identity link.
Probability mass function of the three-parameter EWP
Description
Probability mass function of the three-parameter EWP
Usage
dewp3(x, lambda, beta1, beta2, sum_limit = max(x) * 3)
Arguments
| x | vector of (positive integer) quantiles. | 
| lambda | centrality parameter | 
| beta1 | lower-tail dispersion parameter | 
| beta2 | upper tail dispersion parameter | 
| sum_limit | summation limit for the normalizing factor | 
Value
a vector of probabilities
Probability mass function of the three-parameter EWP
Description
Probability mass function of the three-parameter EWP
Usage
dewp3_cpp(x, lambda, beta1, beta2, sum_limit)
Arguments
| x | vector of (positive integer) quantiles. | 
| lambda | centrality parameter | 
| beta1 | lower-tail dispersion parameter | 
| beta2 | upper tail dispersion parameter | 
| sum_limit | summation limit for the normalizing factor | 
Value
a probability mass
Exponentially weighted Poisson regression model
Description
Exponentially weighted Poisson regression model
Usage
ewp_reg(
  formula,
  family = "ewp3",
  data,
  verbose = TRUE,
  method = "Nelder-Mead",
  hessian = TRUE,
  autoscale = TRUE,
  maxiter = 500,
  sum_limit = round(max(Y) * 3),
  start_val = NULL
)
Arguments
| formula | an object of class "formula" (or one that can be coerced to that class): a symbolic description of the model to be fitted. | 
| family | choice of "ewp2" or "ewp3" | 
| data | a data frame containing the variables in the model. | 
| verbose | logical, defaults to TRUE; print model fitting progress | 
| method | string, passed to optim, defaults to 'BFGS' | 
| hessian | logical, defaults to TRUE; calculate Hessian? | 
| autoscale | logical, defaults to TRUE; automatically scale model parameters inside the optimisation routine based on initial estimates from a Poisson regression. | 
| maxiter | numeric, maximum number of iterations for optim | 
| sum_limit | numeric, defaults to 3*maximum count; upper limit for the sum used for the normalizing factor. | 
| start_val | list, defaults to fitting a Poisson regression; specify starting values | 
Value
an ewp model
Extract fitted values
Description
Extract fitted values
Usage
## S3 method for class 'ewp'
fitted(object, ...)
Arguments
| object | an object of class ewp | 
| ... | ignored | 
Value
a vector of fitted values on the response scale
Linnet clutch sizes
Description
A dataset containing the clutch sizes for linnet, recreated from Ridout & Besbeas 2004
Usage
linnet
Format
A data frame with 5414 rows and 3 variables:
- eggs
- clutch size 
- cov1
- a synthetic random noise covariate 
- cov2
- a synthetic covariate that is positively correlated with the outcome 
Source
Ridout & Besbeas 2004, P. Boersch-Supan
Extract log likelihood
Description
Extract log likelihood
Usage
## S3 method for class 'ewp'
logLik(object, ...)
Arguments
| object | an object of class ewp | 
| ... | ignored | 
Value
a numeric
Estimate marginal means
Description
Estimate marginal means
Usage
mmean(object, cov, ci = TRUE, nsamples = 250, ...)
Arguments
| object | ewp model object | 
| cov | character, covariate to find marginal mean for | 
| ci | logical, defaults to TRUE, whether or not to include confidence intervals | 
| nsamples | numeric, defaults to 250, number of samples for use in obtaining the confidence intervals | 
| ... | ignored | 
Value
printout of the marginal means
Predict from fitted model
Description
Predict from fitted model
Usage
## S3 method for class 'ewp'
predict(object, newdata, type = c("response"), na.action = na.pass, ...)
Arguments
| object | ewp model object | 
| newdata | optional data.frame | 
| type | character; default="response", no other type implemented | 
| na.action | defaults to na.pass() | 
| ... | ignored | 
Value
a vector of predictions
Print ewp model object
Description
Print ewp model object
Usage
## S3 method for class 'ewp'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments
| x | ewp model object | 
| digits | digits to print | 
| ... | ignored | 
Value
a summary printout of the ewp model call and fitted coefficients.
Print ewp model summary
Description
Print ewp model summary
Usage
## S3 method for class 'summary.ewp'
print(x, digits = max(3, getOption("digits") - 3), ...)
Arguments
| x | ewp model summary | 
| digits | number of digits to print | 
| ... | additional arguments to printCoefmat() | 
Value
printout of the summary object
Random samples from the three-parameter EWP
Description
Random samples from the three-parameter EWP
Usage
rewp3(n, lambda, beta1, beta2, sum_limit = 30)
Arguments
| n | number of observations | 
| lambda | centrality parameter | 
| beta1 | lower-tail dispersion parameter | 
| beta2 | upper tail dispersion parameter | 
| sum_limit | summation limit for the normalizing factor | 
Value
random deviates from the EWP_3 distribution
simulate from fitted model
Description
simulate from fitted model
Usage
## S3 method for class 'ewp'
simulate(object, nsim = 1, ...)
Arguments
| object | ewp model object | 
| nsim | number of response vectors to simulate. Defaults to 1. | 
| ... | ignored | 
Value
a data frame with 'nsim' columns.
Model summary
Description
Model summary
Usage
## S3 method for class 'ewp'
summary(object, ...)
Arguments
| object | ewp model fit | 
| ... | ignored | 
Value
The function 'summary.ewp' computes and returns a list of summary statistics of the fitted ewp model.
Extract estimated variance-covariance matrix
Description
Extract estimated variance-covariance matrix
Usage
## S3 method for class 'ewp'
vcov(object, ...)
Arguments
| object | an object of class ewp | 
| ... | ignored | 
Value
a matrix