## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(epiparameter) ## ----------------------------------------------------------------------------- convert_params_to_summary_stats("gamma", shape = 2.5, scale = 1.5) ## ----------------------------------------------------------------------------- convert_summary_stats_to_params("gamma", mean = 2, sd = 2) convert_summary_stats_to_params("gamma", mean = 2, var = 2) convert_summary_stats_to_params("gamma", mean = 2, cv = 2) ## ----------------------------------------------------------------------------- ep <- epiparameter( disease = "<Disease name>", pathogen = "<Pathogen name>", epi_name = "<Epidemilogical Distribution name>", prob_distribution = create_prob_distribution( prob_distribution = "gamma", prob_distribution_params = c(shape = 2.5, scale = 1.5) ) ) convert_params_to_summary_stats(ep) ## ----------------------------------------------------------------------------- ep <- epiparameter( disease = "<Disease name>", pathogen = "<Pathogen name>", epi_name = "<Epidemilogical Distribution name>", prob_distribution = "gamma" ) convert_params_to_summary_stats(ep, shape = 2.5, scale = 1.5) ## ----------------------------------------------------------------------------- ep <- epiparameter( disease = "<Disease name>", pathogen = "<Pathogen name>", epi_name = "<Epidemilogical Distribution name>", prob_distribution = "gamma", summary_stats = create_summary_stats(mean = 3.75, sd = 2.37) ) convert_summary_stats_to_params(ep) ## ----------------------------------------------------------------------------- ep <- epiparameter( disease = "<Disease name>", pathogen = "<Pathogen name>", epi_name = "<Epidemilogical Distribution name>", prob_distribution = "gamma" ) convert_summary_stats_to_params(ep, mean = 3.75, sd = 2.37) ## ----------------------------------------------------------------------------- convert_params_to_summary_stats("lnorm", meanlog = 2.5, sdlog = 1.5) ## ----------------------------------------------------------------------------- convert_summary_stats_to_params("lnorm", mean = 2, sd = 2) convert_summary_stats_to_params("lnorm", mean = 2, var = 2) convert_summary_stats_to_params("lnorm", mean = 2, cv = 2) convert_summary_stats_to_params("lnorm", median = 2, sd = 2) convert_summary_stats_to_params("lnorm", median = 2, var = 2) ## ----------------------------------------------------------------------------- convert_params_to_summary_stats("weibull", shape = 2.5, scale = 1.5) ## ----------------------------------------------------------------------------- convert_summary_stats_to_params("weibull", mean = 2, sd = 2) convert_summary_stats_to_params("weibull", mean = 2, var = 2) convert_summary_stats_to_params("weibull", mean = 2, cv = 2) ## ----------------------------------------------------------------------------- convert_params_to_summary_stats("nbinom", prob = 0.5, dispersion = 0.5) ## ----------------------------------------------------------------------------- convert_summary_stats_to_params("nbinom", mean = 1, sd = 1) convert_summary_stats_to_params("nbinom", mean = 1, var = 1) convert_summary_stats_to_params("nbinom", mean = 1, cv = 1) ## ----------------------------------------------------------------------------- convert_params_to_summary_stats("geom", prob = 0.5) ## ----------------------------------------------------------------------------- convert_summary_stats_to_params("geom", mean = 1) ## ----------------------------------------------------------------------------- extract_param( type = "percentiles", values = c(1, 10), distribution = "gamma", percentiles = c(0.025, 0.975) ) ## ----------------------------------------------------------------------------- extract_param( type = "range", values = c(10, 5, 15), distribution = "lnorm", samples = 25 ) ## ----------------------------------------------------------------------------- # set seed to ensure warning is produced set.seed(1) # lower maximum iteration to show warning extract_param( type = "range", values = c(10, 1, 25), distribution = "lnorm", samples = 100, control = list(max_iter = 100) ) ## ----extract_param for monkeypox percentiles---------------------------------- # Mpox lnorm from 75th percentiles in WHO data extract_param( type = "percentiles", values = c(6, 13), distribution = "lnorm", percentiles = c(0.125, 0.875) ) ## ----extract_param for monkeypox median and range----------------------------- # Mpox lnorm from median and range in 2022: extract_param( type = "range", values = c(7, 3, 20), distribution = "lnorm", samples = 23 ) ## ----convert parameters------------------------------------------------------- # SARS gamma mean and var to shape and scale convert_summary_stats_to_params("gamma", mean = 6.37, var = 16.7)