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Abstract

An increasing number of quantitative reviews of epidemiological data includes a dose-
response analysis. Although user-written procedures have been implemented and widely
used in common commercial statistical software (Stata, SAS), no package was available
for the free software R. Aims of this paper are to describe the main aspects (covari-
ances of correlated outcomes, pooling of study-specific trends, flexible modelling of the
exposure, testing hypothesis, statistical heterogeneity, graphical presentation of the pool
dose-response trend) of the methodology and to illustrate the novel package dosresmeta

for performing multivariate dose-response meta-analysis.
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1. Introduction

Epidemiological studies often assess whether the observed relationship between increasing (or
decreasing) levels of exposure and the risk of diseases follows a certain dose-response pat-
tern (U-shaped, J-shaped, linear). Quantitative exposures in predicting health events are
frequently categorized and modeled with indicator or dummy variables using one exposure
level as referent (Turner, Dobson, and Pocock 2010). Using a categorical approach no spe-
cific trend is assumed and data as well as results are typically presented in a tabular form.
The purpose of a meta-analysis of summarised dose-response data is to describe the overall
functional relation and identify exposure intervals associated with higher or lower disease risk.

A method for dose-response meta-analysis was first described in a seminal paper by Greenland
and Longnecker (1992) and since then it has been cited about 574 times (citation data available
from Web of Science). Methodological articles next investigated how to model non linear
dose-response associations (Orsini, Li, Wolk, Khudyakov, and Spiegelman 2012; Bagnardi,
Zambon, Quatto, and Corrao 2004; Liu, Cook, Bergström, and Hsieh 2009; Rota, Bellocco,
Scotti, Tramacere, Jenab, Corrao, La Vecchia, Boffetta, and Bagnardi 2010), how to deal with
covariances of correlated outcomes (Hamling, Lee, Weitkunat, and Ambühl 2008; Berrington
and Cox 2003), how to assess publication bias (Shi and Copas 2004), and how to assign a
typical dose to an exposure interval (Takahashi and Tango 2010).

The number of published dose-response meta-analyses increased about 20 times over the last
decade, from 6 papers in 2002 to 121 papers in 2013 (number of citations of the paper by
Greenland and Longnecker (1992) obtained from Web of Science). The increase of publications
has been greatly facilitated by the release of user-written procedures for commonly used
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Table 1: Summarized dose-response data required for a dose-response meta-analysis.

dose cases n RR 95% CI

x0 c0 n0 1 —
...

...
...

...
...

xn cn nn RRn RRn, RRn

commercial statistical software; namely the glst command (Orsini, Bellocco, and Greenland
2006) developed for Stata and the metadose macro (Li and Spiegelman 2010) developed for
SAS. No procedure, however, was available in the free software programming language R.

Aims of the current paper are to describe the main aspects (covariances of correlated out-
comes, pooling of study-specific trends, flexible modelling of the exposure, testing hypothesis,
statistical heterogeneity, predictions, and graphical presentation of the pool dose-response
trend) of the methodology and to illustrate the use of the novel R package dosresmeta for
performing dose-response meta-analysis. Other factors to be considered when conducting
quantitative reviews of dose-response data are selection of studies, exposure measurement
error, and potential confounding arising in observational studies.

The paper is organized as follows: section 2 introduces the method for trend estimation for
single and multiple studies; section 3 describes how to use the dosresmeta package; section 4
provides some worked examples; and section 5 contains final comments.

2. Methods

The data required from each study included in a dose-response meta-analysis are displayed in
Table 1. Dose values, x, are assigned in place of the n exposure intervals. The assigned dose
is typically the median or midpoint value. Depending on the study design, dose-specific odds
ratios, rate ratios, or risk ratios (from now on generally referred to as relative risks (RR))
eventually adjusted for potential confounders are reported together with the corresponding

95% confidence intervals
(
RR, RR

)
using a common reference category x0. Additionally,

information about the number of cases and total number of subjects or person-time within
each exposure category is needed.

We now describe the two stage procedure to estimate a pooled exposure-disease curve from
such summarized dose-response data.

2.1. First stage: trend estimation for a single study

In the first stage of the analysis the aim is to estimate the dose-response association between
the adjusted log relative risks and the levels of a specific exposure in a particular study.

Model definition

The model consists of a log-linear model where the dependent variable is the logarithm of the
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relative risks (logRR) as function of the dose

y = Xβ + ϵ (1)

where y is an n × 1 vector of adjusted log relative risks (not including the reference one) and
X is a n × p matrix containing the non-referent values of the dose and/or some transforms of
it (e.g., splines, polynomials).

X =




g1(x1j) − g1(x0j) . . . gp(xpj) − gp(x0j)
...

...
g1(xnjj) − g1(x0j) . . . gp(xnjj) − gp(x0j)


 (2)

Of note, the design matrix X has no intercept because the log relative risk is equal to zero
for the reference exposure value x0. A linear trend (p = 1) implies that g1 is the identity
function. A quadratic trend (p = 2) implies that g1 is the identity function and g2 is the
squared function. The β is a p × 1 vector of unknown regression coefficients defining the
pooled dose-response association.

Approximating covariances

A particular feature of dose-response data is that the error terms in ϵ are not independent
because are constructed using a common reference (unexposed) group. It has been shown that
assuming zero covariance or correlation leads to biased estimates of the trend (Greenland and
Longnecker 1992; Orsini et al. 2012).

The variance-covariance matrix COV(ϵ) is equal to the following symmetric matrix

COV(ϵ) = S =




σ2
1

...
. . .

σi1 σ2
i

...
. . .

σn1 . . . σni . . . σ2
n




.

where the covariance among (log) relative risks implies the non-diagonal elements of S are
unlikely equal to zero. Briefly, Greenland and Longnecker (1992) approximate the covariances
by defining a table of pseudo or effective counts corresponding to the multivariable adjusted
log relative risks. A unique solution is guaranteed by keeping the margins of the table of
pseudo-counts equal to the margins of the crude or unadjusted data.

More recently Hamling et al. (2008) developed an alternative method to approximate the
covariances by defining a table of effective counts corresponding to the multivariable adjusted
log relative risks as well as their standard errors. A unique solution is guaranteed by keeping
the ratio of non-cases to cases and the fraction of unexposed subjects equal to the unadjusted
data. An evaluation of those approximations can be found in Orsini et al. (2012).

There is no need of such methods, however, when the average covariance is directly pub-
lished using the floating absolute risk method (Easton, Peto, and Babiker 1991) or the esti-
mated variance/covariance matrix is provided directly by the principal investigator in pooling
projects or pooling of standardized analyses.
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Estimation

The approximated covariance can be then used to efficiently estimate the vector of regression
coefficients β of the model in Equation 1 using generalized least squares method. The method
involves minimizing (y − Xβ)⊤Σ−1(y − Xβ) with respect to β. The vector of estimates β̂
and the estimated covariance matrix V̂ are obtained as:

β̂ = (X⊤S−1X)−1X⊤S−1y

V̂ = (X⊤S−1X)−1
(3)

2.2. Second stage: trend estimation for multiple studies

The aim of the second stage analysis is to combine study-specific estimates using established
methods for multivariate meta-analysis (Van Houwelingen, Arends, and Stijnen 2002; White
2009; Jackson, White, and Thompson 2010; Gasparrini, Armstrong, and Kenward 2012; Jack-
son, White, and Riley 2013).

Model definition

Let us indicate each study included in the meta-analysis with the index j = 1, . . . , m. The
first stage provides p-length vector of parameters β̂j and the accompanying p × p estimated

covariance matrix V̂j . The coefficients β̂j obtained in the first stage analysis are now used
as outcome in a multivariate meta-analysis

β̂j ∼ Np(β, V̂j +ψ) (4)

where V̂j +ψ = Σj . The marginal model defined in Equation 4 has independent within-study

and between-study components. In the within-study component, the estimated β̂j is assumed

to be sampled with error from Np(βj , V̂j), a multivariate normal distribution of dimension p,
where βj is the vector of true unknown outcome parameters for study j. In the between-study
component, βj is assumed sampled from Np(β,ψ), where ψ is the unknown between-study
covariance matrix. Here β can be interpreted as the population-average outcome parameters,
namely the coefficients defining the pooled dose-response trend. The dosresmeta package
refers to the mvmeta package for the second-stage analysis (Gasparrini et al. 2012). Different
methods are available to estimate the parameters: fixed effects (ψ sets to 0), maximum
likelihood, restricted maximum likelihood, and methods of moments.

Hypothesis testing and heterogeneity

There are two questions of interest in a dose-response meta-analysis: is there an associa-
tion between the quantitative exposure and the relative risk of disease? Is there significant
statistical heterogeneity across the study-specific trends?

The overall exposure-disease curve is specified by the vector of coefficients β. Thus the first
question can be addressed by testing H0 : β = 0. If we reject H0 we may be interested
in evaluating any possible departure from a log-linear model. This can be done by testing
H∗

0 : β∗ = 0, where β∗ refers to the vector of coefficients defining non-linearity (e.g. quadratic
term, spline transformations). Wald-type confidence intervals and tests of hypothesis for β
and β∗ can be based on β̂ and its covariance matrix (Harville 1977).
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Variation of dose-response trends across studies, instead, is captured by the variance com-
ponents included in ψ. The hypothesis of no statistical heterogeneity, H0 : ψ = 0, can be
tested by adopting the multivariate extension of the Cochran Q-test (Berkey, Anderson, and
Hoaglin 1996). The test is defined as

Q =
m∑

j=1

[(
β̂j − β̂

)⊤

V̂−1

j

(
β̂j − β̂

)]
(5)

where β̂ is the vector of regression coefficients estimated assuming ψ = 0. Under the null
hypothesis of no statistical heterogeneity among studies the Q statistic follow a χ2

m−p dis-
tribution. It has been shown, however, that the test is likely not to detect heterogeneity in
meta-analyses of small number of studies, and conversely can lead to significant results even
for negligible discrepancies in case of many studies (Higgins and Thompson 2002).

A measure of heterogeneity I2 = max {0, (Q − df)/Q} can be derived from the Q statistic
and its degrees of freedom (df = m − p) (Higgins and Thompson 2002). Its use, along with
the Q, has been recommended because it describes the impact rather than the extent of
heterogeneity.

Prediction

Obtaining predictions is an important step to present the results of a dose-response meta-
analysis in either a tabular or graphical form. The prediction of interest in a dose-response
analysis is the relative risk for the disease comparing two exposure values. Given a range of
exposure x and a chosen reference value xref, the predicted pooled dose-response association
can be obtained as follows

R̂Rref = exp
{

(X − Xref)β̂
}

(6)

where X and Xref are the design matrices evaluated, respectively, in x and xref .

A (1 − α/2) % confidence interval for the predict pooled dose-response curve is given by

exp

{
log(R̂Rref) ∓ zα/2diag

(
(X − Xref)V̂(β̂)(X − Xref)

⊤)
)1/2

}
(7)

where V̂(β̂) is the estimated covariance matrix of β̂. Of note, by construction the confidence
intervals limits for the pooled relative risks are equal to 1 for the reference exposure xref.

3. The dosresmeta package

The dosresmeta package performs multivariate dose-response meta-analysis. The package
is available via at http://CRAN.R-project.org/package=dosresmeta and can be installed
directly within R by typing install.packages("dosresmeta").

The function dosresmeta estimates a dose-response model for either a single or multiple
studies. We now describe the different arguments of the function.

dosresmeta(formula, id, type, v, cases, n, data, intercept = F, center = T,

se, lb, ub, covariance = "gl", method = "reml", fcov, ucov,

alpha = 0.05, ...)

http://CRAN.R-project.org/package=dosresmeta
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The argument formula defines the relation between the outcome and the dose.

The argument id requires an identification variable for the study while the argument type

specifies the study-specific design. The codes for the study design are "cc" (case-control
data), "ir" (incidence-rate data), and "ci" (cumulative incidence data).

The argument v requires the variances of the log relative risks. Alternatively one can provide
the corresponding standard errors in the se argument, or specify the confidence interval for
the relative risks in the lb and ub arguments.

The arguments cases and n requires the variables needed to approximate the covariance
matrix of the log relative risks: number of cases and total number of subject for each exposure
level. For incidence-rate data n requires the amount of Person-Time for each exposure level.

The argument data specifies the name of the data set containing the variables in the previous
arguments.

The logical argument intercept, FALSE by default, indicates if an intercept term needs to
be included in the model. As mentioned earlier the model in Equation 1 typically does not
contain the constant term. The logical argument center, TRUE by default, specifies if the
design matrix of the model should be constructed as defined in Equation 2.

The method is a string that specifies the estimation method: "fixed" for fixed-effects models,
"ml" or "reml" for random-effects models fitted through maximum likelihood or restricted
maximum likelihood (default), and "mm" for random-effects models fitted through method of
moments.

The argument covariance, instead, is a string specifying how to approximate the covariance
matrix for the log relative risks: "gl" for Greenland and Longnecker method (default), "h" for
Hamling method, "fl" for floating absolute risks, "independent" for assuming independence,
and "user" if the covariance matrices are provided by the user.

The output of the dosresmeta function is an object of class “dosresmeta”. The corresponding
print and summary methods can be used to display and inspect the elements of the object.
The predict method allows the user to obtain predictions as described in Section 2.2. The
predictions can be expressed on the RR scale by specifying the optional argument expo equal
to TRUE. The increase in the log RR associated to a d unit increase in the exposure can be
obtained with the optional argument delta = d.

4. Examples

Single study

Consider the case-control study used by Greenland and Longnecker (1992) on alcohol con-
sumption (grams/day) and breast cancer risk. The data cc_ex is included in the dosresmeta

package.

R> library("dosresmeta")

R> data("cc_ex")

R> print(cc_ex, row.names = F, digits = 2)

gday dose case control n crudeor adjrr lb ub logrr
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Ref. 0 165 172 337 1.00 1.0 1.00 1.0 0.00

<2.5 2 74 93 167 0.83 0.8 0.51 1.3 -0.22

2.5-9.3 6 90 96 186 0.98 1.2 0.73 1.9 0.15

>9.3 11 122 90 212 1.41 1.6 0.99 2.5 0.45

Assuming a log-linear dose-response association between alcohol consumption and breast
cancer risk, we estimate the model using the following code

R> mod.cc <- dosresmeta ( formula = logrr ~ dose, type = "cc", cases = case,

+ n = n, lb = lb, ub = ub, data = cc_ex)

R> summary(mod.cc)

Call: dosresmeta(formula = logrr ~ dose, type = "cc", cases = case,

n = n, data = cc_ex, lb = lb, ub = ub)

One-stage fixed-effects meta-analysis

Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 4.8333 (df = 1), p-value = 0.0279

Fixed-effects coefficients

Estimate Std. Error z Pr(>|z|) 95%ci.lb 95%ci.ub

dose 0.0454 0.0207 2.1985 0.0279 0.0049 0.0859 *

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

1 study 3 values, 1 fixed and 0 random-effects parameters

logLik AIC BIC

0.7835 0.4330 -0.4684

The change in the log relative risk of breast cancer corresponding to 1 gram/day increase
in alcohol consumption was 0.0454. On the exponential scale, every 1 gram/day increase of
alcohol consumption was associated with a 4.6 % (exp(0.0454) = 1.046) higher breast cancer
risk. The predict function allows the user to express the log-linear trend for any different
amount. For example, by setting delta = 11

R> predict(mod.cc, delta = 11, exp = TRUE)

delta pred ci.lb ci.ub

11 1.648255 1.055709 2.573384

Every 11 grams/day increment in alcohol consumption was associated with a significant 65%
(95% CI = 1.06 , 2.57) higher breast cancer risk.

Multiple studies

We now perform a dose-response meta-analysis of 8 prospective cohort studies participating
in the Pooling Project of Prospective Studies of Diet and Cancer used by Orsini et al. (2012).
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There are 6 exposure intervals (from 0 grams/day to 45 grams/day) for each study. A total
of 3,646 cases and 2,511,424 person-years were included in the dose-response analysis. All
relative risks were adjusted for smoking status, smoking duration for past and current smokers
(years), number of cigarettes smoked daily for current smokers, educational level, body mass
index, and energy intake (kcal/day).

The data ex_alcohol_crc is included in the dosresmeta package. Below is a snapshot of
the data set for the first two studies.

R> data("alcohol_crc")

R> print(alcohol_crc[1:12 ,], row.names = F, digits = 2)

id type dose cases peryears logrr se

atm ir 0.0 28 22186 0.000 NA

atm ir 1.8 38 43031 -0.417 0.25

atm ir 9.2 43 53089 -0.396 0.25

atm ir 22.9 32 45348 -0.488 0.26

atm ir 35.7 16 19791 -0.279 0.32

atm ir 58.4 27 19920 0.202 0.29

hpm ir 0.0 100 103002 0.000 NA

hpm ir 2.1 65 106826 -0.416 0.16

hpm ir 9.5 104 119846 -0.099 0.14

hpm ir 18.8 63 58034 0.094 0.17

hpm ir 36.7 46 33081 0.205 0.18

hpm ir 59.4 30 18455 0.343 0.22

First we assume a log-linear relation between alcohol consumption and colorectal cancer risk
using a random-effect model. The estimation is carried out by running the following line

R> lin <- dosresmeta(formula = logrr ~ dose, id = id, type = type, se = se,

+ cases = cases, n = peryears, data = alcohol_crc)

R> summary(lin)

Call: dosresmeta(formula = logrr ~ dose, id = id, type = type, cases = cases,

n = peryears, data = alcohol_crc, se = se)

Two-stage random-effects meta-analysis

Estimation method: REML

Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 22.6704 (df = 1), p-value = 0.0000

Fixed-effects coefficients

Estimate Std. Error z Pr(>|z|) 95%ci.lb

(Intercept) 0.0064 0.0014 4.7613 0.0000 0.0038

95%ci.ub

(Intercept) 0.0091 ***
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---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Between-study random-effects (co)variance components

Std. Dev

0.0000

Univariate Cochran Q-test for residual heterogeneity:

Q = 4.7797 (df = 7), p-value = 0.6868

I-square statistic = 0.0%

8 studies, 8 values, 1 fixed and 1 random-effects parameters

logLik AIC BIC

29.6176 -55.2352 -55.3434

We found a significant log-linear dose-response association between alcohol consumption and
colorectal cancer risk (p < 0.001) and no evidence of heterogeneity across studies (Q = 4.78,
p value = 0.6868).

The change in colorectal cancer risk associated with every 12 grams/day (standard drink) can
be obtained with the predict function.

R> predict(lin, delta = 12, exp = TRUE)

delta pred ci.lb ci.ub

12 1.080313 1.0465 1.115218

Every 12 grams/day increase in alcohol consumption was associated with a significant 8%
(95% CI = 4.6, 11.5) increased risk of colorectal cancer.

The log-linear assumption between alcohol consumption and colorectal cancer risk can be
relaxed by using regression splines. A possibility is to use restricted cubic spline model as
described by Orsini et al. (2012): 4 knots at the 5th, 35th, 65th and 95th percentiles of the
aggregated exposure distribution. The rms package (Harrell 2013) provides three (4 − 1)
variables (the initial exposure and two splines transformations) to be included in the dose-
response model. Statistical heterogeneity across studies can be taken into account by using a
random-effects approach.

R> library("rms")

R> knots <- quantile(alcohol_crc$dose, c(.05, .35, .65, .95))

R> spl <- dosresmeta(formula = logrr ~ rcs(dose, knots), type = type, id = id,

+ se = se, cases = cases, n = peryears, data = alcohol_crc)

R> summary(spl)

Call: dosresmeta(formula = logrr ~ rcs(dose, knots), id = id, type = type,

cases = cases, n = peryears, data = alcohol_crc, se = se)

Two-stage random-effects meta-analysis
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Estimation method: REML

Covariance approximation: Greenland & Longnecker

Chi2 model: X2 = 28.3632 (df = 3), p-value = 0.0000

Fixed-effects coefficients

Estimate Std. Error z Pr(>|z|)

rcs(dose, knots)dose -0.0097 0.0082 -1.1937 0.2326

rcs(dose, knots)dose’ 0.1274 0.0808 1.5757 0.1151

rcs(dose, knots)dose’’ -0.2144 0.1488 -1.4407 0.1497

95%ci.lb 95%ci.ub

rcs(dose, knots)dose -0.0257 0.0062

rcs(dose, knots)dose’ -0.0311 0.2858

rcs(dose, knots)dose’’ -0.5061 0.0773

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Between-study random-effects (co)variance components

Std. Dev Corr

rcs(dose, knots)dose 0.0112 rcs(dose, knots)dose

rcs(dose, knots)dose’ 0.0777 -1

rcs(dose, knots)dose’’ 0.1274 1

rcs(dose, knots)dose rcs(dose, knots)dose’

rcs(dose, knots)dose’

rcs(dose, knots)dose’’ -1

Univariate Cochran Q-test for residual heterogeneity:

Q = 20.5624 (df = 21), p-value = 0.4859

I-square statistic = 0.0%

8 studies, 24 values, 3 fixed and 6 random-effects parameters

logLik AIC BIC

43.0662 -68.1324 -58.7317

The risk of colorectal cancer is significantly varying according to alcohol consumption. We
reject the null hypothesis of overall no association (all three regression coefficients simulta-
neously equal to zero) between alcohol consumption and colorectal cancer risk (χ2 = 28.36,
p < 0.001). The simpler log-linear dose-response model can be obtained from the restricted
cubic spline model by constraining the regression coefficients for the second and the third
spline, rcs(dose, knots).dose’ and rcs(dose, knots).dose", equal to zero. Therefore, a
Wald-type test for the hypothesis of deviation from log-linearity can be carried out as follows

R> waldtest(b = coef(spl), Sigma = vcov(spl), Terms = 2:3)

Wald test:
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----------

Chi-squared test:

X2 = 5.1, df = 2, P(> X2) = 0.078

The marginally significant p value (χ2 = 5.1, p = 0.078) suggested that the risk of colorectal
cancer may not vary in a log-linear fashion with alcohol consumption. We presented the
predicted relative risks arising from the log-linear and restricted cubic spline models (Figure 1)
using 0 grams/day as referent (xref = 0).

R> newdata <- data.frame(dose <- seq(0, 60, 1))

R> xref <- 0

R> with(predict(spl, newdata, xref, exp = TRUE),{

+ plot(get("rcs(dose, knots)dose"), pred, type = "l", ylim = c(.8, 1.8),

+ ylab = "Relative risk", xlab = "Alcohol consumption, grams/day",

+ log = "y", bty = "l", las = 1)

+ matlines(get("rcs(dose, knots)dose"), cbind(ci.ub, ci.lb),

+ col = 1, lty = "dashed")

+ })

R> points(dose, predict(lin, newdata, xref)$pred, type = "l", lty = 3)

R> rug(alcohol_crc$dose)

A tabular presentation of predicted point and interval estimates of the relative risks for
selected values of the exposure of the two fitted models is greatly facilitated by the predict

function. For example, a table of pooled relative risks of colorectal cancer risk for a range of
alcohol consumption between 0 and 60 grams/day (with step by 12 grams/day) is obtained
as follow

R> dataTab <- data.frame(dose = seq(0, 60, 12))

R> predLin <- predict(lin, dataTab, exp = TRUE)

R> predSpl <- predict(spl, dataTab, exp = TRUE)

R> round(cbind(lin = predLin, spl = predSpl[4:6]), 2)

lin.dose lin.pred lin.ci.lb lin.ci.ub spl.pred spl.ci.lb spl.ci.ub

1 0 1.00 1.00 1.00 1.00 1.00 1.00

2 12 1.08 1.05 1.12 0.95 0.84 1.07

3 24 1.17 1.10 1.24 1.07 0.94 1.21

4 36 1.26 1.15 1.39 1.22 1.07 1.39

5 48 1.36 1.20 1.55 1.37 1.20 1.56

6 60 1.47 1.26 1.73 1.53 1.25 1.88

The reference exposure used to obtain predicted relative risks can be easily modified by setting
xref to a different value. For example, one could use xref = 12 grams/day (corresponding to
1 standard drink) as graphically shown in Figure 2.
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Figure 1: Pooled dose-response association between alcohol consumption and colorectal can-
cer risk (solid line). Alcohol consumption was modeled with restricted cubic splines in a
multivariate random-effects dose-response model. Dash lines represent the 95% confidence
intervals for the spline model. The dotted line represents the linear trend. Tick marks below
the curve represent the positions of the study-specific relative risks. The value of 0 grams/day
served as referent. The relative risks are plotted on the log scale.

5. Conclusion

We presented the key elements involved in a dose-response meta-analysis of epidemiological
data. These elements includes reconstructing the variance/covariance matrix of published
relative risks, testing hypothesis, predictions, and graphical presentation of the pooled trend.
We described a two-stage approach to combine either linear or non-linear dose-response as-
sociations. Applications of the novel R package dosresmeta were illustrated through several
worked examples.

One strength of this paper is to provide an accessible introduction to multivariate dose-
response meta-analysis. In particular, we showed how to flexibly model a quantitative expo-
sure using spline transformations and how to present graphically the predicted pooled relative
risks using different reference values. Although dose-response meta-analyses are increasingly
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Figure 2: Pooled dose-response association between alcohol consumption and colorectal can-
cer risk (solid line). Alcohol consumption was modeled with restricted cubic splines in a
multivariate random-effects dose-response model. Dash lines represent the 95% confidence
intervals for the spline model. The dotted line represents the linear trend. Tick marks be-
low the curve represent the positions of the study-specific relative risks. The value of 12
grams/day served as referent. The relative risks are plotted on the log scale.

popular and published in the medical literature using commercial statistical software, no pro-
cedures were available for the free software programming language of R. Therefore, another
strength of this paper is to present the first release of the dosresmeta package written for R.

In conclusion, this paper described the main steps involved in a dose-response meta-analysis.
The dosresmeta package as well as worked examples can be useful to introduce researchers
to the application of this increasingly popular method.
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