## ----setup, include=FALSE---------------------------------------------------------------------------------------------
knitr::opts_chunk$set(
echo = TRUE,
message = FALSE,
warning = FALSE,
fig.width = 8,
fig.height = 6,
out.width = "100%",
dpi = 300,
collapse = TRUE,
comment = "#>"
)
options(
width = 120,
pillar.min_chars = 15,
pillar.min_title_chars = Inf,
tibble.print_max = 10
)
# Load required packages
library(cpam)
library(dplyr)
library(tidyr)
library(stringr)
library(ggplot2)
#"cpam: changepoint additive models"
## ----installation, eval=FALSE-----------------------------------------------------------------------------------------
# install.packages("cpam")
## ----loading, eval=FALSE----------------------------------------------------------------------------------------------
# library(cpam)
# library(dplyr)
# library(tidyr)
# library(stringr)
# library(ggplot2)
#
## ----experimental-design----------------------------------------------------------------------------------------------
# load example data
load(system.file("extdata", "exp_design_example.rda", package = "cpam"))
exp_design_example
## ----count-matrix-----------------------------------------------------------------------------------------------------
# load example data
load(system.file("extdata", "count_matrix_example.rda", package = "cpam"))
as.data.frame(count_matrix_example) %>% head
## ----fitting-the-model, eval = T--------------------------------------------------------------------------------------
cpo <- prepare_cpam(exp_design = exp_design_example,
count_matrix = count_matrix_example,
model_type = "case-only",
t2g = NULL,
gene_level = T,
num_cores = 1) # just for the example
cpo <- compute_p_values(cpo) # 6 seconds
cpo <- estimate_changepoint(cpo) # 4 seconds
cpo <- select_shape(cpo) # 5 seconds
## ----print-cpo--------------------------------------------------------------------------------------------------------
cpo
## ----results-1--------------------------------------------------------------------------------------------------------
results(cpo)
## ----filtered-results-------------------------------------------------------------------------------------------------
results(cpo, min_count = 10, min_lfc = 1, p_threshold = 0.01)
## ----plot-g063--------------------------------------------------------------------------------------------------------
plot_cpam(cpo, gene_id = "g063")
## ----find-tp-gene-----------------------------------------------------------------------------------------------------
results(cpo) %>%
filter(shape == "tp")
## ----plot-g210--------------------------------------------------------------------------------------------------------
plot_cpam(cpo, gene_id = "g210")
## ----plot-g210-shape2-------------------------------------------------------------------------------------------------
plot_cpam(cpo, gene_id = "g210",shape_type = "shape2")
## ----results-cp3}-----------------------------------------------------------------------------------------------------
results(cpo) %>%
filter(cp == 3)
## ----plot-g013--------------------------------------------------------------------------------------------------------
plot_cpam(cpo, gene_id = "g013")
## ----clusters-1, cache=TRUE-------------------------------------------------------------------------------------------
res <- results(cpo)
plot_cluster(cpo, res, changepoints = 1, shapes = c("cv"))
## ----clusters-2, cache=TRUE-------------------------------------------------------------------------------------------
plot_cluster(cpo, res, changepoints = 2, shapes = c("dlin","mdcx"))
## ----session-info-----------------------------------------------------------------------------------------------------
sessionInfo()