## ----setup, include=FALSE--------------------------------------------------------------------------------------------- knitr::opts_chunk$set( echo = TRUE, message = FALSE, warning = FALSE, fig.width = 8, fig.height = 6, out.width = "100%", dpi = 300, collapse = TRUE, comment = "#>" ) options( width = 120, pillar.min_chars = 15, pillar.min_title_chars = Inf, tibble.print_max = 10 ) # Load required packages library(cpam) library(dplyr) library(tidyr) library(stringr) library(ggplot2) #"cpam: changepoint additive models" ## ----installation, eval=FALSE----------------------------------------------------------------------------------------- # install.packages("cpam") ## ----loading, eval=FALSE---------------------------------------------------------------------------------------------- # library(cpam) # library(dplyr) # library(tidyr) # library(stringr) # library(ggplot2) # ## ----experimental-design---------------------------------------------------------------------------------------------- # load example data load(system.file("extdata", "exp_design_example.rda", package = "cpam")) exp_design_example ## ----count-matrix----------------------------------------------------------------------------------------------------- # load example data load(system.file("extdata", "count_matrix_example.rda", package = "cpam")) as.data.frame(count_matrix_example) %>% head ## ----fitting-the-model, eval = T-------------------------------------------------------------------------------------- cpo <- prepare_cpam(exp_design = exp_design_example, count_matrix = count_matrix_example, model_type = "case-only", t2g = NULL, gene_level = T, num_cores = 1) # just for the example cpo <- compute_p_values(cpo) # 6 seconds cpo <- estimate_changepoint(cpo) # 4 seconds cpo <- select_shape(cpo) # 5 seconds ## ----print-cpo-------------------------------------------------------------------------------------------------------- cpo ## ----results-1-------------------------------------------------------------------------------------------------------- results(cpo) ## ----filtered-results------------------------------------------------------------------------------------------------- results(cpo, min_count = 10, min_lfc = 1, p_threshold = 0.01) ## ----plot-g063-------------------------------------------------------------------------------------------------------- plot_cpam(cpo, gene_id = "g063") ## ----find-tp-gene----------------------------------------------------------------------------------------------------- results(cpo) %>% filter(shape == "tp") ## ----plot-g210-------------------------------------------------------------------------------------------------------- plot_cpam(cpo, gene_id = "g210") ## ----plot-g210-shape2------------------------------------------------------------------------------------------------- plot_cpam(cpo, gene_id = "g210",shape_type = "shape2") ## ----results-cp3}----------------------------------------------------------------------------------------------------- results(cpo) %>% filter(cp == 3) ## ----plot-g013-------------------------------------------------------------------------------------------------------- plot_cpam(cpo, gene_id = "g013") ## ----clusters-1, cache=TRUE------------------------------------------------------------------------------------------- res <- results(cpo) plot_cluster(cpo, res, changepoints = 1, shapes = c("cv")) ## ----clusters-2, cache=TRUE------------------------------------------------------------------------------------------- plot_cluster(cpo, res, changepoints = 2, shapes = c("dlin","mdcx")) ## ----session-info----------------------------------------------------------------------------------------------------- sessionInfo()