## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( fig.alt = "Figura generada por la viñeta; ver texto para detalles.", collapse = TRUE, comment = "#>", fig.width = 8, fig.height = 6, warning = FALSE, message = FALSE ) library(cowfootR) library(ggplot2) library(dplyr) library(knitr) ## ----------------------------------------------------------------------------- # Tier 1 enteric calculation example enteric_tier1 <- calc_emissions_enteric( n_animals = 100, cattle_category = "dairy_cows", production_system = "mixed", tier = 1 # Uses default emission factors ) print(enteric_tier1$emission_factors) ## ----------------------------------------------------------------------------- # Tier 2 enteric calculation with detailed parameters enteric_tier2 <- calc_emissions_enteric( n_animals = 100, cattle_category = "dairy_cows", avg_milk_yield = 7200, avg_body_weight = 580, dry_matter_intake = 19.5, ym_percent = 6.2, tier = 2 # Uses energy-based calculation ) print(enteric_tier2$emission_factors) ## ----------------------------------------------------------------------------- # Tier 1: Simple emission factors manure_tier1 <- calc_emissions_manure( n_cows = 100, manure_system = "liquid_storage", tier = 1 ) # Tier 2: VS and MCF-based calculation manure_tier2 <- calc_emissions_manure( n_cows = 100, manure_system = "liquid_storage", tier = 2, avg_body_weight = 580, diet_digestibility = 0.68, climate = "temperate", retention_days = 90, system_temperature = 20 ) # Compare results manure_comparison <- data.frame( Tier = c("Tier 1", "Tier 2"), CH4_kg = c(manure_tier1$ch4_kg, manure_tier2$ch4_kg), N2O_kg = c(manure_tier1$n2o_total_kg, manure_tier2$n2o_total_kg), CO2eq_kg = c(manure_tier1$co2eq_kg, manure_tier2$co2eq_kg), Method = c("Default factors", "VS + MCF calculation") ) kable(manure_comparison, caption = "Manure Management: Tier 1 vs Tier 2") ## ----------------------------------------------------------------------------- # Define comprehensive farm data farm_profile <- list( # Basic data (required for both tiers) dairy_cows = 120, heifers = 35, calves = 40, milk_production = 850000, # litres/year farm_area = 160, # hectares # Detailed data (enhances Tier 2) cow_body_weight = 580, heifer_body_weight = 380, calf_body_weight = 170, milk_yield_per_cow = 7080, cow_dm_intake = 19.2, heifer_dm_intake = 11.5, calf_dm_intake = 6.2, diet_digestibility = 0.67, ym_factor = 6.1, # Management data concentrate_feed = 195000, # kg/year n_fertilizer = 2200, # kg N/year diesel_use = 9500, # litres/year electricity = 52000 # kWh/year ) print(farm_profile[1:8]) ## ----------------------------------------------------------------------------- # Complete Tier 1 assessment boundaries <- set_system_boundaries("farm_gate") # Tier 1 calculations enteric_t1 <- calc_emissions_enteric( n_animals = farm_profile$dairy_cows, cattle_category = "dairy_cows", tier = 1, boundaries = boundaries ) heifers_t1 <- calc_emissions_enteric( n_animals = farm_profile$heifers, cattle_category = "heifers", tier = 1, boundaries = boundaries ) calves_t1 <- calc_emissions_enteric( n_animals = farm_profile$calves, cattle_category = "calves", tier = 1, boundaries = boundaries ) manure_t1 <- calc_emissions_manure( n_cows = farm_profile$dairy_cows + farm_profile$heifers + farm_profile$calves, manure_system = "pasture", tier = 1, boundaries = boundaries ) soil_t1 <- calc_emissions_soil( n_fertilizer_synthetic = farm_profile$n_fertilizer, n_excreta_pasture = (farm_profile$dairy_cows + farm_profile$heifers) * 100, area_ha = farm_profile$farm_area, boundaries = boundaries ) energy_t1 <- calc_emissions_energy( diesel_l = farm_profile$diesel_use, electricity_kwh = farm_profile$electricity, country = "UY", boundaries = boundaries ) inputs_t1 <- calc_emissions_inputs( conc_kg = farm_profile$concentrate_feed, fert_n_kg = farm_profile$n_fertilizer, boundaries = boundaries ) # Aggregate Tier 1 results enteric_combined_t1 <- list(source = "enteric", co2eq_kg = enteric_t1$co2eq_kg + heifers_t1$co2eq_kg + calves_t1$co2eq_kg) total_t1 <- calc_total_emissions(enteric_combined_t1, manure_t1, soil_t1, energy_t1, inputs_t1) ## ----------------------------------------------------------------------------- # Complete Tier 2 assessment using detailed data enteric_t2 <- calc_emissions_enteric( n_animals = farm_profile$dairy_cows, cattle_category = "dairy_cows", avg_milk_yield = farm_profile$milk_yield_per_cow, avg_body_weight = farm_profile$cow_body_weight, dry_matter_intake = farm_profile$cow_dm_intake, ym_percent = farm_profile$ym_factor, tier = 2, boundaries = boundaries ) heifers_t2 <- calc_emissions_enteric( n_animals = farm_profile$heifers, cattle_category = "heifers", avg_body_weight = farm_profile$heifer_body_weight, dry_matter_intake = farm_profile$heifer_dm_intake, ym_percent = farm_profile$ym_factor, tier = 2, boundaries = boundaries ) calves_t2 <- calc_emissions_enteric( n_animals = farm_profile$calves, cattle_category = "calves", avg_body_weight = farm_profile$calf_body_weight, dry_matter_intake = farm_profile$calf_dm_intake, tier = 2, boundaries = boundaries ) manure_t2 <- calc_emissions_manure( n_cows = farm_profile$dairy_cows + farm_profile$heifers + farm_profile$calves, manure_system = "pasture", tier = 2, avg_body_weight = 500, # Weighted average diet_digestibility = farm_profile$diet_digestibility, climate = "temperate", boundaries = boundaries ) # Soil and other sources remain the same enteric_combined_t2 <- list(source = "enteric", co2eq_kg = enteric_t2$co2eq_kg + heifers_t2$co2eq_kg + calves_t2$co2eq_kg) total_t2 <- calc_total_emissions(enteric_combined_t2, manure_t2, soil_t1, energy_t1, inputs_t1) ## ----------------------------------------------------------------------------- # Compare tier results tier_comparison <- data.frame( Source = c("Enteric", "Manure", "Soil", "Energy", "Inputs", "TOTAL"), Tier1_kg = c( enteric_combined_t1$co2eq_kg, manure_t1$co2eq_kg, soil_t1$co2eq_kg, energy_t1$co2eq_kg, inputs_t1$total_co2eq_kg, total_t1$total_co2eq ), Tier2_kg = c( enteric_combined_t2$co2eq_kg, manure_t2$co2eq_kg, soil_t1$co2eq_kg, energy_t1$co2eq_kg, inputs_t1$total_co2eq_kg, total_t2$total_co2eq ) ) %>% mutate( Difference_kg = Tier2_kg - Tier1_kg, Difference_pct = round((Tier2_kg - Tier1_kg) / Tier1_kg * 100, 1) ) kable(tier_comparison, caption = "Emission Source Comparison: Tier 1 vs Tier 2") ## ----fig.width=10, fig.height=6----------------------------------------------- # Prepare data for visualization comparison_long <- tier_comparison %>% filter(Source != "TOTAL") %>% select(Source, Tier1_kg, Tier2_kg) %>% tidyr::pivot_longer(cols = c(Tier1_kg, Tier2_kg), names_to = "Tier", values_to = "Emissions") %>% mutate(Tier = gsub("_kg", "", Tier)) # Create comparison chart ggplot(comparison_long, aes(x = Source, y = Emissions, fill = Tier)) + geom_col(position = "dodge", alpha = 0.8) + geom_text(aes(label = format(round(Emissions), big.mark = ",")), position = position_dodge(width = 0.9), vjust = -0.3, size = 3) + labs(title = "Emission Estimates: Tier 1 vs Tier 2 Methodology", subtitle = "Same farm, different calculation approaches", x = "Emission Source", y = "Emissions (kg CO₂eq/year)") + theme_minimal() + theme(plot.title = element_text(size = 14, hjust = 0.5), axis.text.x = element_text(angle = 45, hjust = 1)) + scale_fill_brewer(type = "qual", palette = "Set1") ## ----------------------------------------------------------------------------- # Calculate intensity metrics for both tiers intensity_t1 <- calc_intensity_litre( total_emissions = total_t1, milk_litres = farm_profile$milk_production, fat = 3.7, protein = 3.2 ) intensity_t2 <- calc_intensity_litre( total_emissions = total_t2, milk_litres = farm_profile$milk_production, fat = 3.7, protein = 3.2 ) # Compare intensities intensity_comparison <- data.frame( Metric = c("Total Emissions (kg CO₂eq)", "Milk Intensity (kg CO₂eq/kg FPCM)", "FPCM Production (kg)", "Difference in Intensity (%)", "Management Classification"), Tier1 = c( format(round(total_t1$total_co2eq), big.mark = ","), round(intensity_t1$intensity_co2eq_per_kg_fpcm, 3), format(round(intensity_t1$fpcm_production_kg), big.mark = ","), "-", ifelse(intensity_t1$intensity_co2eq_per_kg_fpcm < 1.2, "Good", "Needs Improvement") ), Tier2 = c( format(round(total_t2$total_co2eq), big.mark = ","), round(intensity_t2$intensity_co2eq_per_kg_fpcm, 3), format(round(intensity_t2$fpcm_production_kg), big.mark = ","), round((intensity_t2$intensity_co2eq_per_kg_fpcm - intensity_t1$intensity_co2eq_per_kg_fpcm) / intensity_t1$intensity_co2eq_per_kg_fpcm * 100, 1), ifelse(intensity_t2$intensity_co2eq_per_kg_fpcm < 1.2, "Good", "Needs Improvement") ) ) kable(intensity_comparison, caption = "Intensity Metrics: Tier 1 vs Tier 2") ## ----------------------------------------------------------------------------- tier1_requirements <- data.frame( Category = c("Animal Data", "Production", "Management", "Optional"), Essential_Data = c( "Number by category (cows, heifers, calves)", "Annual milk production (litres)", "Manure system type, basic inputs", "Farm area, country location" ), Time_to_Collect = c("< 1 hour", "< 1 hour", "1-2 hours", "< 1 hour"), Data_Source = c("Farm records", "Milk processor", "Farmer interview", "Farm records") ) kable(tier1_requirements, caption = "Tier 1 Data Requirements") ## ----------------------------------------------------------------------------- tier2_additional <- data.frame( Category = c("Animal Characteristics", "Nutrition", "Management Detail", "Environmental"), Additional_Data = c( "Body weights, milk yield per cow, breeding records", "Feed composition, DM intake, diet digestibility", "Precise input quantities, equipment usage", "Climate data, soil types, system temperatures" ), Time_to_Collect = c("2-4 hours", "4-8 hours", "2-4 hours", "1-2 hours"), Expertise_Level = c("Basic", "Intermediate", "Basic", "Basic") ) kable(tier2_additional, caption = "Additional Tier 2 Data Requirements") ## ----------------------------------------------------------------------------- uncertainty_analysis <- data.frame( Source = c("Enteric", "Manure", "Soil", "Energy", "Inputs"), Tier1_Uncertainty = c("±30%", "±40%", "±50%", "±15%", "±25%"), Tier2_Uncertainty = c("±15%", "±25%", "±30%", "±15%", "±20%"), Key_Improvement = c( "Diet-specific Ym factors", "VS calculation from intake", "Site-specific soil factors", "No significant change", "Regional emission factors" ) ) kable(uncertainty_analysis, caption = "Uncertainty Comparison by Emission Source") ## ----fig.width=10, fig.height=8----------------------------------------------- # Create accuracy comparison visualization accuracy_data <- data.frame( Factor = c("Enteric - Default EF", "Enteric - Energy Method", "Manure - Default", "Manure - VS/MCF", "Soil - Standard", "Energy - Standard", "Inputs - Default"), Tier = c("Tier 1", "Tier 2", "Tier 1", "Tier 2", "Both", "Both", "Both"), Uncertainty_Low = c(70, 85, 60, 75, 50, 85, 75), Uncertainty_High = c(130, 115, 140, 125, 150, 115, 125), Method_Complexity = c(1, 3, 1, 3, 2, 2, 2) ) accuracy_data$Uncertainty_Mid <- (accuracy_data$Uncertainty_Low + accuracy_data$Uncertainty_High) / 2 ggplot(accuracy_data, aes(x = reorder(Factor, Method_Complexity), y = Uncertainty_Mid, color = Tier)) + geom_pointrange(aes(ymin = Uncertainty_Low, ymax = Uncertainty_High), size = 0.8, alpha = 0.8) + geom_hline(yintercept = 100, linetype = "dashed", color = "gray50") + coord_flip() + labs(title = "Accuracy Ranges by Methodology and Tier", subtitle = "100 = Perfect accuracy, wider ranges = higher uncertainty", x = "Calculation Method", y = "Accuracy Range (% of true value)", color = "IPCC Tier") + theme_minimal() + theme(plot.title = element_text(size = 14, hjust = 0.5)) + scale_color_brewer(type = "qual", palette = "Set1") ## ----------------------------------------------------------------------------- decision_framework <- data.frame( Criterion = c("Purpose", "Data Availability", "Time Available", "Expertise Level", "Accuracy Needs", "Budget", "Follow-up Actions"), Use_Tier1 = c( "Regional estimates, screening", "Basic farm records only", "< 1 day", "Basic agricultural knowledge", "General magnitude (±30%)", "Minimal cost", "Awareness, general comparison" ), Use_Tier2 = c( "Farm management, mitigation", "Detailed records + measurements", "2-5 days", "Nutrition/LCA knowledge helpful", "Management decisions (±15%)", "Moderate investment", "Specific interventions, monitoring" ) ) kable(decision_framework, caption = "Tier Selection Decision Framework") ## ----------------------------------------------------------------------------- # Cost-benefit comparison cost_benefit <- data.frame( Aspect = c("Data Collection Cost", "Technical Expertise", "Processing Time", "Result Accuracy", "Management Value", "Policy Applicability"), Tier1_Score = c(1, 1, 1, 2, 2, 3), # 1=low, 3=high Tier2_Score = c(3, 2, 2, 3, 3, 2), Weight = c(0.2, 0.15, 0.15, 0.25, 0.15, 0.1) # Importance weights ) cost_benefit$Tier1_Weighted <- cost_benefit$Tier1_Score * cost_benefit$Weight cost_benefit$Tier2_Weighted <- cost_benefit$Tier2_Score * cost_benefit$Weight tier1_total <- sum(cost_benefit$Tier1_Weighted) tier2_total <- sum(cost_benefit$Tier2_Weighted) cat("Weighted Decision Scores:\n") cat("Tier 1:", round(tier1_total, 2), "\n") cat("Tier 2:", round(tier2_total, 2), "\n") cat("\nRecommendation: Use", ifelse(tier2_total > tier1_total, "Tier 2", "Tier 1"), "for most farm-level assessments\n") ## ----------------------------------------------------------------------------- # Test sensitivity of key Tier 2 parameters sensitivity_tests <- list( baseline = list(ym = 6.1, body_weight = 580, dm_intake = 19.2), high_ym = list(ym = 6.8, body_weight = 580, dm_intake = 19.2), low_ym = list(ym = 5.4, body_weight = 580, dm_intake = 19.2), heavy_cows = list(ym = 6.1, body_weight = 650, dm_intake = 19.2), light_cows = list(ym = 6.1, body_weight = 510, dm_intake = 19.2), high_intake = list(ym = 6.1, body_weight = 580, dm_intake = 21.5), low_intake = list(ym = 6.1, body_weight = 580, dm_intake = 16.9) ) sensitivity_results <- lapply(names(sensitivity_tests), function(scenario) { params <- sensitivity_tests[[scenario]] enteric_test <- calc_emissions_enteric( n_animals = farm_profile$dairy_cows, cattle_category = "dairy_cows", avg_milk_yield = farm_profile$milk_yield_per_cow, avg_body_weight = params$body_weight, dry_matter_intake = params$dm_intake, ym_percent = params$ym, tier = 2 ) data.frame( Scenario = scenario, CH4_kg = enteric_test$ch4_kg, CO2eq_kg = enteric_test$co2eq_kg ) }) sensitivity_df <- do.call(rbind, sensitivity_results) %>% mutate( Change_from_baseline = round((CO2eq_kg - CO2eq_kg[Scenario == "baseline"]) / CO2eq_kg[Scenario == "baseline"] * 100, 1) ) kable(sensitivity_df, caption = "Tier 2 Parameter Sensitivity Analysis") ## ----fig.width=10, fig.height=6----------------------------------------------- # Create hypothetical farm comparison set.seed(456) farm_comparison <- data.frame( Farm = paste0("Farm_", LETTERS[1:6]), Tier1_Intensity = c(1.15, 1.42, 0.98, 1.65, 1.28, 1.33), Tier2_Intensity = c(1.08, 1.51, 1.12, 1.48, 1.35, 1.29) ) %>% mutate( Tier1_Rank = rank(Tier1_Intensity), Tier2_Rank = rank(Tier2_Intensity), Rank_Change = Tier2_Rank - Tier1_Rank ) # Visualize ranking changes ranking_plot_data <- farm_comparison %>% select(Farm, Tier1_Rank, Tier2_Rank) %>% tidyr::pivot_longer(cols = c(Tier1_Rank, Tier2_Rank), names_to = "Tier", values_to = "Rank") %>% mutate(Tier = gsub("_Rank", "", Tier)) ggplot(ranking_plot_data, aes(x = Tier, y = Rank, group = Farm, color = Farm)) + geom_line(size = 1.2, alpha = 0.7) + geom_point(size = 3) + geom_text(aes(label = Farm), vjust = -0.8, size = 3) + scale_y_reverse(breaks = 1:6, labels = paste0("#", 1:6)) + labs(title = "Farm Ranking Changes: Tier 1 vs Tier 2", subtitle = "Lines show how farm rankings change between methodologies", x = "Methodology Tier", y = "Performance Rank (1 = best)") + theme_minimal() + theme(legend.position = "none", plot.title = element_text(size = 14, hjust = 0.5)) kable(farm_comparison[, c("Farm", "Tier1_Intensity", "Tier2_Intensity", "Rank_Change")], caption = "Impact of Methodology on Farm Rankings") ## ----------------------------------------------------------------------------- # Quality control recommendations quality_control <- data.frame( Tier = c("Tier 1", "Tier 1", "Tier 2", "Tier 2", "Both"), Check_Type = c("Data Range", "Internal Consistency", "Parameter Validation", "Results Plausibility", "Cross-Validation"), Description = c( "Verify animal numbers and production within expected ranges", "Check milk per cow, stocking rates against system type", "Validate body weights, intakes against literature values", "Compare results with similar farms and published studies", "Run both tiers where possible, investigate large differences" ), Critical_Level = c("Medium", "High", "High", "Medium", "High") ) kable(quality_control, caption = "Quality Assurance Recommendations by Tier")