bullseye is an R package which calculates measures of
correlation and other association scores for pairs of variables in a
dataset and offers visualisations of these measures in different
layouts. The package also calculates and visualises the pairwise scores
for different levels of a grouping variable.
This vignette gives an overview of how these pairwise variable measures are calculated. Visualisations of these calculated measures are provided in the accompanying vignette.
Table 1 lists the different measures of association provided in the package with the variable types they can be used with, the package used for calculation, the information on whether the measure is symmetric, and the minimum and maximum value of the measure.
| name | nn | ff | fn | from | range | ordinal | 
|---|---|---|---|---|---|---|
| pair_cor | TRUE | FALSE | FALSE | cor | [-1,1] | NA | 
| pair_dcor | TRUE | FALSE | FALSE | energy::dcor2d | [0,1] | NA | 
| pair_mine | TRUE | FALSE | FALSE | minerva::mine | [0,1] | NA | 
| pair_ace | TRUE | TRUE | TRUE | acepack::ace | [0,1] | FALSE | 
| pair_cancor | TRUE | TRUE | TRUE | cancor | [0,1] | FALSE | 
| pair_nmi | TRUE | TRUE | TRUE | linkspotter::maxNMI | [0,1] | FALSE | 
| pair_polychor | FALSE | TRUE | FALSE | polycor::polychor | [-1,1] | TRUE | 
| pair_polyserial | FALSE | FALSE | TRUE | polycor::polyserial | [-1,1] | TRUE | 
| pair_tauB | FALSE | TRUE | FALSE | DescTools::KendalTauB | [-1,1] | TRUE | 
| pair_tauA | FALSE | TRUE | FALSE | DescTools::KendalTauA | [-1,1] | TRUE | 
| pair_tauC | FALSE | TRUE | FALSE | DescTools::StuartTauC | [-1,1] | TRUE | 
| pair_tauW | FALSE | TRUE | FALSE | DescTools::KendalW | [-1,1] | TRUE | 
| pair_gkGamma | FALSE | TRUE | FALSE | DescTools::GoodmanKruskalGamma | [-1,1] | TRUE | 
| pair_gkTau | FALSE | TRUE | FALSE | DescTools::GoodmanKruskalTau | [0,1] | TRUE | 
| pair_uncertainty | FALSE | TRUE | FALSE | DescTools::UncertCoef | [0,1] | FALSE | 
| pair_chi | FALSE | TRUE | FALSE | DescTools::ContCoef | [0,1] | FALSE | 
| pair_scag | TRUE | FALSE | FALSE | scagnostics::scagnostics | [0,1] | NA | 
Each of the functions in the first column of Table 1 calculates pairwise scores for a dataset.
sc_dcor <- pair_dcor(penguins)
str(sc_dcor)
#> pairwise [10 × 6] (S3: pairwise/tbl_df/tbl/data.frame)
#>  $ x        : chr [1:10] "bill_depth_mm" "bill_length_mm" "bill_depth_mm" "body_mass_g" ...
#>  $ y        : chr [1:10] "bill_length_mm" "flipper_length_mm" "flipper_length_mm" "flipper_length_mm" ...
#>  $ score    : chr [1:10] "dcor" "dcor" "dcor" "dcor" ...
#>  $ group    : chr [1:10] "all" "all" "all" "all" ...
#>  $ value    : Named num [1:10] 0.387 0.666 0.704 0.867 0.587 ...
#>   ..- attr(*, "names")= chr [1:10] "" "" "" "" ...
#>  $ pair_type: chr [1:10] "nn" "nn" "nn" "nn" ...For example, we see that pair_dcor calculates the
distance correlation for every pair of numeric variables in the
penguins dataset. There are missing values in this dataset,
all the pair_ functions use pairwise complete observations
by default.
sc_dcor is a tibble of class pairwise, with
the two variables in columns x and y (arranged
in alphabetical order), calculated values in the column
value, and the name of the score calculated in the column
score. All of the variables are numeric, hence “nn” in the
pair_type column.
Similarly, one can use pair_nmi to calculate normalised
mutual information for numeric, factor and mixed pairs of variables.
sc_nmi <- pair_nmi(penguins)
sc_nmi
#> # A tibble: 28 × 6
#>    x                 y                 score group  value pair_type
#>    <chr>             <chr>             <chr> <chr>  <dbl> <chr>    
#>  1 bill_depth_mm     bill_length_mm    nmi   all   0.225  nn       
#>  2 bill_length_mm    flipper_length_mm nmi   all   0.375  nn       
#>  3 bill_depth_mm     flipper_length_mm nmi   all   0.470  nn       
#>  4 body_mass_g       flipper_length_mm nmi   all   0.581  nn       
#>  5 bill_length_mm    body_mass_g       nmi   all   0.303  nn       
#>  6 bill_depth_mm     body_mass_g       nmi   all   0.443  nn       
#>  7 bill_length_mm    year              nmi   all   0.0517 nn       
#>  8 bill_depth_mm     year              nmi   all   0.0387 nn       
#>  9 flipper_length_mm year              nmi   all   0.0707 nn       
#> 10 body_mass_g       year              nmi   all   0.0445 nn       
#> # ℹ 18 more rowsThe main difference here is that factor variables are included. In
the pair_type column, “ff” and “fn” indicate factor-factor
and factor-numeric pairs.
If you want more control over the measure calculated, the function
pairwise_scores calculates a different score depending on
variable types.
pairwise_scores(penguins) |> distinct(score, pair_type)
#> # A tibble: 3 × 2
#>   score   pair_type
#>   <chr>   <chr>    
#> 1 cancor  ff       
#> 2 cancor  fn       
#> 3 pearson nnAs you can see, the default uses pearson’s correlation for numeric
pairs, and canonical correlation for factor-numeric or factor-factor
pairs. In addition polychoric correlation is used for two ordered
factors, but there are no ordered factors in this data. Alternative
scores may be specified using the control argument to
pairwise_scores. The default value for this
control argument is given by
If you want for instance to compare distance correlation and mutual
information measures in a display, two pairwise data
structures can be combined:
bind_rows(sc_dcor, sc_nmi) |> arrange(x,y)
#> # A tibble: 38 × 6
#>    x             y                 score group value pair_type
#>    <chr>         <chr>             <chr> <chr> <dbl> <chr>    
#>  1 bill_depth_mm bill_length_mm    dcor  all   0.387 nn       
#>  2 bill_depth_mm bill_length_mm    nmi   all   0.225 nn       
#>  3 bill_depth_mm body_mass_g       dcor  all   0.614 nn       
#>  4 bill_depth_mm body_mass_g       nmi   all   0.443 nn       
#>  5 bill_depth_mm flipper_length_mm dcor  all   0.704 nn       
#>  6 bill_depth_mm flipper_length_mm nmi   all   0.470 nn       
#>  7 bill_depth_mm island            nmi   all   0.282 fn       
#>  8 bill_depth_mm sex               nmi   all   0.356 fn       
#>  9 bill_depth_mm species           nmi   all   0.493 fn       
#> 10 bill_depth_mm year              dcor  all   0.112 nn       
#> # ℹ 28 more rowsWe provide another function pairwise_multi which
calculates multiple association measures for every variable pair in a
dataset. By default this function combines the results of
pair_cor,
pair_dcor,pair_mine,pair_ace,
pair_cancor,pair_nmi,pair_uncertainty,
pair_chi, but any subset of the pair_
functions may be supplied as an argument, as in the second example
below.
pairwise_multi(penguins)
#> # A tibble: 130 × 6
#>    x             y              score    group  value pair_type
#>    <chr>         <chr>          <chr>    <chr>  <dbl> <chr>    
#>  1 bill_depth_mm bill_length_mm pearson  all   -0.235 nn       
#>  2 bill_depth_mm bill_length_mm spearman all   -0.222 nn       
#>  3 bill_depth_mm bill_length_mm dcor     all    0.387 nn       
#>  4 bill_depth_mm bill_length_mm MIC      all    0.313 nn       
#>  5 bill_depth_mm bill_length_mm ace      all    0.585 nn       
#>  6 bill_depth_mm bill_length_mm cancor   all    0.235 nn       
#>  7 bill_depth_mm bill_length_mm nmi      all    0.225 nn       
#>  8 bill_depth_mm body_mass_g    pearson  all   -0.472 nn       
#>  9 bill_depth_mm body_mass_g    spearman all   -0.432 nn       
#> 10 bill_depth_mm body_mass_g    dcor     all    0.614 nn       
#> # ℹ 120 more rows
dcor_nmi <- pairwise_multi(penguins, c("pair_dcor", "pair_nmi"))For each of the pairwise calculation functions, they can be wrapped
using pairwise_by to build a score calculation for each
level of a grouping variable. Of course, grouped scores could be
calculated using dplyr machinery, but it is a bit more
work.
pairwise_by(penguins, by="species", pair_cor)
#> Warning: Variable island of data for group species = Chinstrap has at most one unique
#> value, discounting NA.
#> Warning: Variable island of data for group species = Gentoo has at most one unique
#> value, discounting NA.
#> # A tibble: 40 × 6
#>    x             y                 score   group      value pair_type
#>    <chr>         <chr>             <chr>   <fct>      <dbl> <chr>    
#>  1 bill_depth_mm bill_length_mm    pearson Adelie     0.391 nn       
#>  2 bill_depth_mm bill_length_mm    pearson Chinstrap  0.654 nn       
#>  3 bill_depth_mm bill_length_mm    pearson Gentoo     0.643 nn       
#>  4 bill_depth_mm bill_length_mm    pearson all       -0.235 nn       
#>  5 bill_depth_mm body_mass_g       pearson Adelie     0.576 nn       
#>  6 bill_depth_mm body_mass_g       pearson Chinstrap  0.604 nn       
#>  7 bill_depth_mm body_mass_g       pearson Gentoo     0.719 nn       
#>  8 bill_depth_mm body_mass_g       pearson all       -0.472 nn       
#>  9 bill_depth_mm flipper_length_mm pearson Adelie     0.308 nn       
#> 10 bill_depth_mm flipper_length_mm pearson Chinstrap  0.580 nn       
#> # ℹ 30 more rowsUse argument ungrouped=FALSE to suppress calculation of
the ungrouped scores.
The pairwise_scores function introduced previously also
has a by argument, and provides pairwise scores for the
levels of a grouping variable.
sc_sex <- pairwise_scores(penguins, by="species")
#> Warning: Variable island of data for group species = Chinstrap has at most one unique
#> value, discounting NA.
#> Warning: Variable island of data for group species = Gentoo has at most one unique
#> value, discounting NA.The column group now shows the levels of the grouping
variable, along with “all” for ungrouped scores. Use
ungrouped=FALSE to suppress calculation of the ungrouped
scores.
sc_sex |> distinct(group)
#> # A tibble: 4 × 1
#>   group    
#>   <fct>    
#> 1 Adelie   
#> 2 Chinstrap
#> 3 Gentoo   
#> 4 allIf you want to calculate different scores to the default, specify
this via the control argument:
pc <- pair_control(nn="pairwise_multi", nnargs= c("pair_dcor", "pair_ace"), fn=NULL, ff=NULL)
sc_sex <- pairwise_scores(penguins, by="species", control=pc, ungrouped=FALSE) 
#> Warning: Variable island of data for group species = Chinstrap has at most one unique
#> value, discounting NA.
#> Warning: Variable island of data for group species = Gentoo has at most one unique
#> value, discounting NA.Both of the functions pairwise_by and
pairwise_scores have an additional argument
add.nobs. When this is set to TRUE, the pairwise structure
has an additional column giving the number of observations used in the
calculation of each score.
This is potentially useful information in the presence of imbalanced data or with missing values.
pairwise_scores(penguins, by="species",add.nobs=TRUE) 
#> Warning: Variable island of data for group species = Chinstrap has at most one unique
#> value, discounting NA.
#> Warning: Variable island of data for group species = Gentoo has at most one unique
#> value, discounting NA.
#> # A tibble: 84 × 7
#>    x                 y      score  group   value pair_type     n
#>    <chr>             <chr>  <chr>  <fct>   <dbl> <chr>     <int>
#>  1 island            sex    cancor Adelie 0.0164 ff          146
#>  2 bill_length_mm    island cancor Adelie 0.0838 fn          151
#>  3 bill_depth_mm     island cancor Adelie 0.0629 fn          151
#>  4 flipper_length_mm island cancor Adelie 0.148  fn          151
#>  5 body_mass_g       island cancor Adelie 0.0208 fn          151
#>  6 bill_length_mm    sex    cancor Adelie 0.590  fn          146
#>  7 bill_depth_mm     sex    cancor Adelie 0.597  fn          146
#>  8 flipper_length_mm sex    cancor Adelie 0.355  fn          146
#>  9 body_mass_g       sex    cancor Adelie 0.738  fn          146
#> 10 island            year   cancor Adelie 0.104  fn          152
#> # ℹ 74 more rowsFor other pairwise constructors, the n
column can be added by calling the add_nobs_to_pairwise
function directly:
The package scagnostics provides pairwise variable
scores based on graph-theoretic interestingness measures, for numeric
variable pairs only.
pair_scagnostics(penguins[,1:5], scagnostic=c("Stringy", "Clumpy"))
#> # A tibble: 6 × 6
#>   x              y                 score   group  value pair_type
#>   <chr>          <chr>             <chr>   <chr>  <dbl> <chr>    
#> 1 bill_depth_mm  bill_length_mm    Stringy all   0.331  nn       
#> 2 bill_depth_mm  bill_length_mm    Clumpy  all   0.0328 nn       
#> 3 bill_depth_mm  flipper_length_mm Stringy all   0.378  nn       
#> 4 bill_depth_mm  flipper_length_mm Clumpy  all   0.530  nn       
#> 5 bill_length_mm flipper_length_mm Stringy all   0.370  nn       
#> 6 bill_length_mm flipper_length_mm Clumpy  all   0.0388 nnNote that the first two variables of the penguins data are non-numeric and so are ignored in the above calculation.
For group-wise calculation:
pairwise_by(penguins[,1:5], by="species",function(x) pair_scagnostics(x, scagnostic=c("Stringy", "Clumpy")))
#> Warning: Variable island of data for group species = Chinstrap has at most one unique
#> value, discounting NA.
#> Warning: Variable island of data for group species = Gentoo has at most one unique
#> value, discounting NA.
#> # A tibble: 24 × 6
#>    x             y                 score   group      value pair_type
#>    <chr>         <chr>             <chr>   <fct>      <dbl> <chr>    
#>  1 bill_depth_mm bill_length_mm    Stringy Adelie    0.278  nn       
#>  2 bill_depth_mm bill_length_mm    Clumpy  Adelie    0.0477 nn       
#>  3 bill_depth_mm bill_length_mm    Stringy Chinstrap 0.325  nn       
#>  4 bill_depth_mm bill_length_mm    Clumpy  Chinstrap 0.0758 nn       
#>  5 bill_depth_mm bill_length_mm    Stringy Gentoo    0.393  nn       
#>  6 bill_depth_mm bill_length_mm    Clumpy  Gentoo    0.0579 nn       
#>  7 bill_depth_mm bill_length_mm    Stringy all       0.331  nn       
#>  8 bill_depth_mm bill_length_mm    Clumpy  all       0.0328 nn       
#>  9 bill_depth_mm flipper_length_mm Stringy Adelie    0.392  nn       
#> 10 bill_depth_mm flipper_length_mm Clumpy  Adelie    0.0598 nn       
#> # ℹ 14 more rowspairwise and
vice-versa.The conventional way of representing pairwise scores or correlations
is via a numeric symmetric matrix. The tidy pairwise
structure we use in bullseye is more flexible, and is
amenable to multiple measures of association and grouped measures.
It is straightforward to convert from a symmetric matrix to
pairwise:
x <- cor(penguins[, c("bill_length_mm", "bill_depth_mm" ,"flipper_length_mm" ,"body_mass_g")], 
         use= "pairwise.complete.obs")
pairwise(x, score="pearson", pair_type = "nn")
#> # A tibble: 6 × 6
#>   x              y                 score   group  value pair_type
#>   <chr>          <chr>             <chr>   <chr>  <dbl> <chr>    
#> 1 bill_depth_mm  bill_length_mm    pearson all   -0.235 nn       
#> 2 bill_length_mm flipper_length_mm pearson all    0.656 nn       
#> 3 bill_depth_mm  flipper_length_mm pearson all   -0.584 nn       
#> 4 body_mass_g    flipper_length_mm pearson all    0.871 nn       
#> 5 bill_length_mm body_mass_g       pearson all    0.595 nn       
#> 6 bill_depth_mm  body_mass_g       pearson all   -0.472 nnAnd for the reverse, converting a pairwise to a
symmetric matrix:
as.matrix(sc_dcor)
#>                   bill_depth_mm bill_length_mm body_mass_g flipper_length_mm
#> bill_depth_mm                NA     0.38720211   0.6141631         0.7039636
#> bill_length_mm        0.3872021             NA   0.5871319         0.6664558
#> body_mass_g           0.6141631     0.58713186          NA         0.8674122
#> flipper_length_mm     0.7039636     0.66645577   0.8674122                NA
#> year                  0.1117057     0.07842516   0.0790560         0.1643876
#>                         year
#> bill_depth_mm     0.11170568
#> bill_length_mm    0.07842516
#> body_mass_g       0.07905600
#> flipper_length_mm 0.16438763
#> year                      NAcorrelation:correlation package calculates different kinds of
correlations, such as partial correlations, Bayesian correlations,
multilevel correlations, polychoric correlations, biweight, percentage
bend or Sheperd’s Pi correlations, distance correlation and more. The
output data structure is a tidy dataframe with a correlation value and
correlation tests for variable pairs for which the correlation method is
defined.
correlation::correlation(penguins)
#> # Correlation Matrix (pearson-method)
#> 
#> Parameter1        |        Parameter2 |     r |         95% CI | t(340) |         p
#> -----------------------------------------------------------------------------------
#> bill_length_mm    |     bill_depth_mm | -0.24 | [-0.33, -0.13] |  -4.46 | < .001***
#> bill_length_mm    | flipper_length_mm |  0.66 | [ 0.59,  0.71] |  16.03 | < .001***
#> bill_length_mm    |       body_mass_g |  0.60 | [ 0.52,  0.66] |  13.65 | < .001***
#> bill_length_mm    |              year |  0.05 | [-0.05,  0.16] |   1.01 | 0.797    
#> bill_depth_mm     | flipper_length_mm | -0.58 | [-0.65, -0.51] | -13.26 | < .001***
#> bill_depth_mm     |       body_mass_g | -0.47 | [-0.55, -0.39] |  -9.87 | < .001***
#> bill_depth_mm     |              year | -0.06 | [-0.17,  0.05] |  -1.11 | 0.797    
#> flipper_length_mm |       body_mass_g |  0.87 | [ 0.84,  0.89] |  32.72 | < .001***
#> flipper_length_mm |              year |  0.17 | [ 0.06,  0.27] |   3.17 | 0.007**  
#> body_mass_g       |              year |  0.04 | [-0.06,  0.15] |   0.78 | 0.797    
#> 
#> p-value adjustment method: Holm (1979)
#> Observations: 342The default calculation uses Pearson correlation. Other options are
available via the method argument.
As there is an as.matrix method provided for the results
of correlation::correlation, it is straightforward to
convert this to a pairwise tibble.
x <- correlation::correlation(penguins)
pairwise(as.matrix(x)) 
#> # A tibble: 10 × 6
#>    x                 y                 score group   value pair_type
#>    <chr>             <chr>             <chr> <chr>   <dbl> <chr>    
#>  1 bill_depth_mm     bill_length_mm    <NA>  all   -0.235  <NA>     
#>  2 bill_length_mm    flipper_length_mm <NA>  all    0.656  <NA>     
#>  3 bill_depth_mm     flipper_length_mm <NA>  all   -0.584  <NA>     
#>  4 body_mass_g       flipper_length_mm <NA>  all    0.871  <NA>     
#>  5 bill_length_mm    body_mass_g       <NA>  all    0.595  <NA>     
#>  6 bill_depth_mm     body_mass_g       <NA>  all   -0.472  <NA>     
#>  7 bill_length_mm    year              <NA>  all    0.0545 <NA>     
#>  8 bill_depth_mm     year              <NA>  all   -0.0604 <NA>     
#>  9 flipper_length_mm year              <NA>  all    0.170  <NA>     
#> 10 body_mass_g       year              <NA>  all    0.0422 <NA>