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Description

Given inputs of p-values p from m = length(p) hypothesis tests and their error rates alpha, this
R package function bnpMTP () performs sensitivity analysis and uncertainty quantification for Mul-
tiple Testing Procedures (MTPs) based on a mixture of Dirichlet process (DP) prior distribution
(Ferguson, 1973) supporting all MTPs providing Family-wise Error Rate (FWER) or False Discov-
ery Rate (FDR) control for p-values with arbitrary dependencies, e.g., due to tests performed on
shared data and/or correlated variables, etc. From such an analysis, bnpMTP () outputs the distribu-
tion of the number of significant p-values (discoveries); and a p-value from a global joint test of all
m null hypotheses, based on the probability of significance (discovery) for each p-value.

The DP-MTP sensitivity analysis method can analyze a large number of p-values obtained from
any mix of null hypothesis testing procedures, including one-sample and/or multi-sample tests of:
location, scale, higher moments, distribution, or symmetry; correlation, association, regression co-
efficients, odds ratios; change-points; runs; networks; classification; clustering; posterior distribu-
tions; model fit; outlyingness; and/or continuous hypothesis tests (e.g., performed on a realization
of a random field); among other tests. Also, this sensitivity analysis method handles p-values from
traditional offline testing; and from online testing performed on a stream of null hypotheses arriving
one-by-one (or in blocks) over time (or asynchronously), where each test is based only on previous
fixed test decisions and evidence against the current hypothesis, with unknown future data and total
number of hypotheses being tested (potentially infinite) (Robertson, 2023).

In any case, the DP-MTP sensitivity analysis method assumes that each p-value follows a super-
uniform distribution under the null hypothesis (i.e., either a Uniform(0,1) distribution under a cali-
brated test; or a stochastically larger distribution under a conservative test). More Details about this
method are below (run bnpMTP in R console to view code) and provided by Karabatsos (2025).

Usage
bnpMTP( p = NULL , alpha = 2.05 , N = 1000 , mu =1 )

Arguments
p A vector of p-values. They can have arbitrary dependence.
alpha Scalar (default alpha =0.05) or vector of Type I error probabilities specify-

ing the error rate to be spent or invested (Foster & Stine, 2008) on each of the
m = length(p) null hypothesis tests, with total error rate sum(alpha) such as
sum(alpha) = 0.05 (which can be less than the desired total error rate if input
p excludes p-values from future online tests to be done later), as:
"Once we have spent this (total) error rate, it is gone" (Tukey, 1991, p.104).
Input alpha helps define the random significance thresholds, by:
Delta_nu(r) = alpha * beta_nu(r),
for each ordered p-value p(r) from sort(p), based on a random probability
measure nuon [@, m] from a mixture of Dirichlet process, and on a positive re-
shaping parameter beta_nu(.), used for MTP sensitivity analysis (see Details).
* bnpMTP () converts any scalar input alpha into the following vector input:
alpha <- rep(alpha * (1 / m), m) = alpha * w, which defines the thresh-
olds of the Bonferroni (1936) MTP for m = length(p) = length(w) tests,
where each p-value p[i] is assigned a standard weight w[i] =1/ m.
* Input alpha can be specified as a vector: alpha = alpha@ xw for some
small positive number alpha® (e.g., alpha@ = 0.05), which defines the
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significance thresholds alpha of the weighted Bonferroni MTP, based on
a prior distribution vector w representing the degree of belief for each of the
m = length(p) null hypotheses (Genovese et al.2006), where sum(w) =1
(Tamhane & Gou 2022), or sum(w) < 1 if p excludes p-values from future
online tests to be done later (Tian & Ramdas, 2021, Section 2).

* Some alternatives for vector input alpha are defined by: the Siddk (1967),
Fallback (Wiens & Dmitrienko, 2005), and Adaptive Discarding MTPs for
offline or online FWER control (Tian & Ramdas, 2021); and LORD (Javan-
mard & Montanari 2018) and other generalized alpha investing methods
(Aharoni & Rosset, 2014) for online FDR control (Robertson et al. 2023).

N, mu Number of random samples drawn from the mixture of Dirichlet process (DP (M,
nu_0@)) prior distribution for the random probability measure nu defined on
[0, m], with mass parameter M assigned an Exponential (mu) hyper-prior dis-
tribution with rate mu, where m = length(p). Defaults: N = 1000 and mu = 1.

Details

The Dirichlet process (DP) based MTP sensitivity analysis method (Karabatsos, 2025) assigns a mix-
ture of DP(M, nu_0) prior distribution that flexibly supports the entire space of random probability
measures nu defined on the interval [0, m] form = length(p) hypothesis tests, with Exponential (mu)
hyper-prior distribution assigned to the DP mass parameter M, and with (mean) baseline probability
measure (nu_0) defined by the Benjamini & Yekutieli (2001) MTP. In turn, this mixture DP prior
also supports the space of all MTPs providing FWER or FDR control for p values with arbitrary
dependencies, because each of these MTPs can be uniquely characterized by a random probabil-
ity measure nu, based on the shape function approach to multiple hypothesis testing (Blanchard &
Roquain, 2008, Sections 3.1-3.2; Lemma 3.2, Equation 6, pp.970-972, 976).

Specifically, the DP random probability measure, nu, drives the random number, r.hat_nu, of the
smallest p-values (from input p with length(p) = m) that are significant discoveries, defined via the
following DP random step-up procedure (using inequality <=):

r.hat_nu = max[r \in {@,1,...,m} | p_(r) <=alpha * beta_nu(r)],

where for r =0,1,...,m, the p_(r) (with p_(@) :=0) are the ordered p-values (sort(p)) sorted
in increasing order, with values of random significance thresholds:

Delta_nu(r) = alpha * beta_nu(r),

based on a random shape function:

beta_nu(r) = integral_0"r x d{nu(x)}

which reshapes (Ramdas et al. 2019, pp.2795-2796) or modifies alpha into new significance thresh-
olds Delta_nu(r) to further account for arbitrary dependencies between p-values.

Further details are provided by Karabatsos (2025), who illustrated this DP-MTP sensitivity analysis
method on over twenty-eight thousand p-values of different hypothesis tests performed on observa-
tions of 239 variables from a large dataset.

Value

Output of the DP-MTP sensitivity analysis results, as a list containing the following objects:

r.hat_nu A vector of N samples of the number, r.hat_nu, of the smallest p-values (from
input p) that are significant discoveries, based on N samples of the random prob-
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ability measure nu defined on [0, m] for m = length(p) hypothesis tests, with
nu assigned the mixture of DP prior distribution.

Delta_nu.r, beta_nu.r
Two N-by-(m + 1) matrices of N mixture of DP samples of the threshold function
and the shape function for the sorted p-values (sort (p)) in colnames(Delta_nu.r)
and colnames(beta_nu.r), respectively. Using I = cbind(1:N,r.hat_nu+1),
the N samples of threshold Delta_nu(r.hat_nu) and shape beta_nu(r.hat_nu)
are obtained from Delta_nu.r[I] and beta_nu.r[I].

Table A 3-by-(m+ 1) matrix reporting the probability of significance (PrSig.p) for
each of the m = length(p) total p-values in input p with respective error rate(s)
alpha, based on the mixture DP prior.

For each ordered p-value p_(r) from sort(p), the probability of significance is
estimated by the proportion of N samples of r.hat_nu which satisfy inequality:
p_(r) <=Delta_nu(r.hat_nu),forr=1,...,m = length(p).

The last column of the output Table shows the prior predictive p-value from the
global joint test that all m = length(p) null hypotheses are true; and their total
spent error rate sum(alpha) and their max (PrSig.p). This p-value equals:
min(1 - PrSig.p) =1 - max(PrSig.p)

= mean(r.hat_nu == @) = 1 - mean(r.hat_nu > 0)

based on the idea that the joint null hypothesis should be rejected if at least one
of the m null hypotheses is rejected (Simes, 1986).
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Examples

# Consider a classic data set in the field of multiple hypothesis testing procedures.

# Needleman (1979,Table 3) from yes/no responses to 11 Teachers' Behavioral survey items
# compared 58 children exposed to high lead and 100 children exposed to low lead levels;
# by p-values from 11 chi-square null hypothesis tests of equal group % 'yes' responses;
# and a 2-tail p-value (0.02) from ANCOVA F-test of null hypothesis of equal group means
# in total sum score on the 11 items, while controlling for mother age at child's birth,
# number of pregnancies & educational level; father's socioeconomic status; parental IQ.

# Below, enter the vector of twelve p-values (and then run this R code line, below):
p = c(0.003, 0.05, 0.05, 0.14, 0.08, 0.01, 0.04, 0.01, 0.05, 0.003, 0.003, 0.02)

# Below, name these p-values (then run the three R code lines, below):

names(p) = c( "Distractible” , "Impersistent” , "Dependent” , "Disorganized” ,
"Hyperactive"” , "Impulsive” , "Frustrated” , "Daydreamer” ,
"MissEzDirect” , "MissSegDirect” , "LowFunction” , "SumScore” )
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# Get results of DP-MTP sensitivity analysis of the p-values: (Run 2 code lines, below):
set.seed(123) # for reproducibility of results of Monte Carlo sampling done by bnpMTP()
Result = bnpMTP( p = p , alpha = 0.05 )

# Show probability of significance for each of m = length(p) = 12 p-values in input 'p'
# based on mixture of DP(M, nu_Q) prior; and prior predictive p-value from global test
# of all 12 null hypotheses, and their total error sum(alpha) (run R code line below):
Result$Table

# Summarize mixture of DP(M, nu_@) prior distribution of number of significant p-values:
quantile( Result$r.hat_nu )

# Now suppose that the p-values were obtained from an online stream of hypothesis tests,
# with more hypothesis tests to be performed in the future (possibly infinite).

# Accordingly, we specify the alpha vector based on p-value weights (w) defined

# by the geometric distribution on {1,2,...} with 'success' probability .35,

# with sum(w) < 1 over the currently available twelve p-values in input p.

# Get results of DP-MTP sensitivity analysis of the p-values: (Run 5 code lines, below):
alpha® = 0.05

w dgeom( ( 1 : length(p) ) - 1, prob = 0.35 ) # specify p-value weights.
alpha = alpha0 * w

set.seed(123) # for reproducibility of results of Monte Carlo sampling done by bnpMTP()
Online = bnpMTP( p = p , alpha = alpha )

# Show probability of significance for each of m = length(p) = 12 p-values in input 'p'
# based on mixture of DP(M, nu_Q) prior; and prior predictive p-value from global test
# of the 12 null hypotheses so far and their total error sum(alpha) (run line below):
Online$Table

# Summarize mixture of DP(M, nu_@) prior distribution of number of significant p-values:
quantile( Online$r.hat_nu )
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