Blocking records for record linkage

Maciej Beręsewicz

1 Setup

Read required packages

library(blocking)
library(data.table)

2 Data

Read the example data from the tutorial on the reclin package on the URos 2021 Conference. The data sets are from ESSnet on Data Integration as stated in the repository:

These totally fictional data sets are supposed to have captured details of
persons up to the date 31 December 2011.  Any years of birth captured as 2012
are therefore in error.  Note that in the fictional Census data set, dates of
birth between 27 March 2011 and 31 December 2011 are not necessarily in error.

census: A fictional data set to represent some observations from a
        decennial Census
cis: Fictional observations from Customer Information System, which is
        combined administrative data from the tax and benefit systems

In the dataset census all records contain a person_id. For some of the records
in cis the person_id is also available. This information can be used to
evaluate the linkage (assuming these records from the cis are representable 
all records in the cis). 
data(census)
data(cis)

Census data

head(census)
person_id pername1 pername2 sex dob_day dob_mon dob_year hse_num enumcap enumpc str_nam cap_add census_id
DE03US001001 COUIE PRICE M 1 6 1960 1 1 WINDSOR ROAD DE03US Windsor Road 1, Windsor Road CENSDE03US001001
DE03US001002 ABBIE PVICE F 9 11 1961 1 1 WINDSOR ROAD DE03US Windsor Road 1, Windsor Road CENSDE03US001002
DE03US001003 LACEY PRICE F 7 2 1999 1 1 WINDSOR ROAD DE03US Windsor Road 1, Windsor Road CENSDE03US001003
DE03US001004 SAMUEL PRICE M 13 4 1990 1 1 WINDSOR ROAD DE03US Windsor Road 1, Windsor Road CENSDE03US001004
DE03US001005 JOSEPH PRICE M 20 4 1986 1 1 WINDSOR ROAD DE03US Windsor Road 1, Windsor Road CENSDE03US001005
DE03US001006 JOSH PRICE M 14 2 1996 1 1 WINDSOR ROAD DE03US Windsor Road 1, Windsor Road CENSDE03US001006

CIS data

head(cis)
person_id pername1 pername2 sex dob_day dob_mon dob_year enumcap enumpc cis_id
PO827ER091001 HAYDEN HALL M 1 91 CLARENCE ROAD PO827ER CISPO827ER091001
LS992DB024001 SEREN ANDERSON F 1 1 24 CHURCH LANE LS992DB CISLS992DB024001
M432ZZ053003 LEWIS LEWIS M 1 1 53 CHURCH ROAD M432ZZ CISM432ZZ053003
SW75TQ018001 HARRISON POSTER M 5 1 19 HIGHFIELD ROAD SW75TG CISSW75TQ018001
EX527TR017006 MUHAMMED WATSUN M 7 1 17 VICTORIA STREET CISEX527TR017006
SW540RB001001 RHYS THOMPSON M 7 1 1 SPRINGFIELD ROAD SW540RB CISSW540RB001001

We randomly select 12671 records from census and 12306 records from cis.

set.seed(2024)
census <- census[sample(nrow(census), floor(nrow(census) / 2)), ]
cis <- cis[sample(nrow(cis), floor(nrow(cis) / 2)), ]

We need to create new columns that concatenate variables from pername1 to enumpc.

census[, txt:=paste0(pername1, pername2, sex, dob_day, dob_mon, dob_year, enumcap, enumpc)]
cis[, txt:=paste0(pername1, pername2, sex, dob_day, dob_mon, dob_year, enumcap, enumpc)]

3 Linking datasets

3.1 Using basic functionalities of blocking package

The goal of this exercise is to link units from the CIS dataset to the CENSUS dataset.

result1 <- blocking(x = census$txt, y = cis$txt, verbose = 1)
#> ===== creating tokens =====
#> ===== starting search (nnd, x, y: 12671, 12306, t: 1053) =====
#> ===== creating graph =====

Distribution of distances for each pair.

hist(result1$result$dist, main = "Distribution of distances between pairs", xlab = "Distances")

Example pairs.

head(result1$result, n = 10)
x y block dist
1 12088 8340 0.0452079
2 12156 8378 0.2616496
3 7243 5756 0.0460410
3 10643 5756 0.3730645
4 8422 6453 0.3587636
6 9442 7034 0.3189948
6 10195 7034 0.0416667
7 745 725 0.1633400
8 3072 2770 0.2578439
8 10717 2770 0.1235833

Let’s take a look at the first pair. Obviously there is a typo in the pername1 but all the other variables are the same, so it appears to be a match.

cbind(t(census[1, c(1:7, 9:10)]), t(cis[12088, 1:9]))
#>           [,1]              [,2]             
#> person_id "SW122AB001001"   "SW122AB001001"  
#> pername1  "GEURGE"          "GEORGE"         
#> pername2  "HUGHES"          "HUGHES"         
#> sex       "M"               "M"              
#> dob_day   "19"              "19"             
#> dob_mon   "5"               "5"              
#> dob_year  "1942"            "1942"           
#> enumcap   "1 VICTORIA ROAD" "1 VICTORIA ROAD"
#> enumpc    "SW122AB"         "SW122AB"

3.2 Assessing the quality

For some records, we have information about the correct linkage. We can use this information to evaluate our approach.

matches <- merge(x = census[, .(x=1:.N, person_id)],
                 y = cis[, .(y = 1:.N, person_id)],
                 by = "person_id")
matches[, block:=1:.N]
head(matches)
person_id x y block
DE03US001003 1357 10248 1
DE03US008001 4506 2506 2
DE03US012002 2706 12005 3
DE03US012003 6317 11103 4
DE03US013003 4388 10673 5
DE03US014003 9463 11793 6

So in our example we have 5991 pairs.

result2 <- blocking(x = census$txt, y = cis$txt, verbose = 1,
                    true_blocks = matches[, .(x, y, block)])
#> ===== creating tokens =====
#> ===== starting search (nnd, x, y: 12671, 12306, t: 1053) =====
#> ===== creating graph =====

Let’s see how our approach handled this problem.

result2
#> ========================================================
#> Blocking based on the nnd method.
#> Number of blocks: 8437.
#> Number of columns used for blocking: 1053.
#> Reduction ratio: 0.9999.
#> ========================================================
#> Distribution of the size of the blocks:
#>    2    3    4    5    6    7    8    9 
#> 5567 2086  611  142   23    6    1    1 
#> ========================================================
#> Evaluation metrics (standard):
#>      recall   precision         fpr         fnr    accuracy specificity 
#>     99.8159     99.5326      0.0001      0.1841     99.9999     99.9999 
#>    f1_score 
#>     99.6740

It seems that the default parameters of the NND method result in an FNR of 0.18%. We can see if decreasing the epsilon parameter as suggested in the Nearest Neighbor Descent vignette will help.

ann_control_pars <- controls_ann()
ann_control_pars$nnd$epsilon <- 0.2

result3 <- blocking(x = census$txt, y = cis$txt, verbose = 1, 
                    true_blocks = matches[, .(x, y, block)], 
                    control_ann = ann_control_pars)
#> ===== creating tokens =====
#> ===== starting search (nnd, x, y: 12671, 12306, t: 1053) =====
#> ===== creating graph =====

Changing the epsilon search parameter from 0.1 to 0.2 decreased the FNR to 0.07%.

result3
#> ========================================================
#> Blocking based on the nnd method.
#> Number of blocks: 8451.
#> Number of columns used for blocking: 1053.
#> Reduction ratio: 0.9999.
#> ========================================================
#> Distribution of the size of the blocks:
#>    2    3    4    5    6    7    8    9 
#> 5592 2079  606  142   25    5    1    1 
#> ========================================================
#> Evaluation metrics (standard):
#>      recall   precision         fpr         fnr    accuracy specificity 
#>     99.9332     99.8331      0.0000      0.0668    100.0000    100.0000 
#>    f1_score 
#>     99.8831

Finally, compare the NND and HNSW algorithm for this example.

result4 <- blocking(x = census$txt, y = cis$txt, verbose = 1, 
                    true_blocks = matches[, .(x, y, block)], 
                    ann = "hnsw")
#> ===== creating tokens =====
#> ===== starting search (hnsw, x, y: 12671, 12306, t: 1053) =====
#> ===== creating graph =====

It seems that the HNSW algorithm also performed with 0.07% FNR.

result4
#> ========================================================
#> Blocking based on the hnsw method.
#> Number of blocks: 8447.
#> Number of columns used for blocking: 1053.
#> Reduction ratio: 0.9999.
#> ========================================================
#> Distribution of the size of the blocks:
#>    2    3    4    5    6    7    8    9 
#> 5587 2079  606  142   26    5    1    1 
#> ========================================================
#> Evaluation metrics (standard):
#>      recall   precision         fpr         fnr    accuracy specificity 
#>     99.9332     99.8331      0.0000      0.0668    100.0000    100.0000 
#>    f1_score 
#>     99.8831

3.3 Compare results

Finally, we can compare the results of two ANN algorithms. The overlap between neighbours is given by

c("no tuning" = mean(result2$result[order(y)]$x == result4$result[order(y)]$x)*100,
  "with tuning" = mean(result3$result[order(y)]$x == result4$result[order(y)]$x)*100)
#>   no tuning with tuning 
#>    98.74045    99.21177