## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(bayesplay) ## ----------------------------------------------------------------------------- t <- 2.03 n <- 80 data_model <- likelihood("noncentral_t", t = t, df = n - 1) plot(data_model) ## ----------------------------------------------------------------------------- plot(prior("cauchy", location = 0, scale = 1)) ## ----------------------------------------------------------------------------- plot(prior("cauchy", location = 0, scale = .707)) ## ----------------------------------------------------------------------------- alt_prior <- prior("cauchy", location = 0, scale = 1 * sqrt(n)) plot(alt_prior) ## ----------------------------------------------------------------------------- null_prior <- prior("point", point = 0) plot(null_prior) ## ----------------------------------------------------------------------------- bf_onesample_1 <- integral(data_model * alt_prior) / integral(data_model * null_prior) summary(bf_onesample_1) ## ----------------------------------------------------------------------------- d <- t / sqrt(n) data_model2 <- likelihood("noncentral_d", d = d, n = n) plot(data_model2) ## ----------------------------------------------------------------------------- alt_prior2 <- prior("cauchy", location = 0, scale = 1) plot(alt_prior2) ## ----------------------------------------------------------------------------- bf_onesample_2 <- integral(data_model2 * alt_prior2) / integral(data_model2 * null_prior) summary(bf_onesample_2) ## ----------------------------------------------------------------------------- set.seed(2125519) group1 <- 25 + scale(rnorm(n = 15)) * 15 group2 <- 35 + scale(rnorm(n = 16)) * 16 ## ----------------------------------------------------------------------------- t_result <- t.test(x = group1, y = group2, paired = FALSE, var.equal = TRUE) t_result ## ----------------------------------------------------------------------------- t <- t_result$statistic t ## ----------------------------------------------------------------------------- df <- t_result$parameter df ## ----------------------------------------------------------------------------- data_model3 <- likelihood("noncentral_t", t = t, df = df) ## ----------------------------------------------------------------------------- n1 <- length(group1) n2 <- length(group2) ## ----------------------------------------------------------------------------- alt_prior3 <- prior("cauchy", location = 0, scale = 1 * sqrt((n1 * n2) / (n1 + n2))) plot(alt_prior3) ## ----------------------------------------------------------------------------- bf_independent_1 <- integral(data_model3 * alt_prior3) / integral(data_model3 * null_prior) summary(bf_independent_1) ## ----------------------------------------------------------------------------- m1 <- mean(group1) m2 <- mean(group2) s1 <- sd(group1) s2 <- sd(group2) md_diff <- m1 - m2 sd_pooled <- sqrt((((n1 - 1) * s1^2) + ((n2 - 1) * s2^2)) / (n1 + n2 - 2)) d <- md_diff / sd_pooled d ## ----------------------------------------------------------------------------- data_model4 <- likelihood("noncentral_d2", d = d, n1 = n1, n2 = n2) data_model4 ## ----------------------------------------------------------------------------- plot(data_model4) ## ----------------------------------------------------------------------------- alt_prior4 <- prior("cauchy", location = 0, scale = 1) plot(alt_prior4) ## ----------------------------------------------------------------------------- bf_independent_2 <- integral(data_model4 * alt_prior4) / integral(data_model4 * null_prior) summary(bf_independent_2)