## ---- include = FALSE--------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----setup-------------------------------------------------------------------- library(bayesplay) ## ----------------------------------------------------------------------------- data_mod <- likelihood(family = "normal", mean = 5.5, sd = 32.35) ## ----------------------------------------------------------------------------- h0_mod <- prior(family = "point", point = 0) ## ----------------------------------------------------------------------------- h1_mod <- prior(family = "normal", mean = 0, sd = 13.3, range = c(0, Inf)) ## ----------------------------------------------------------------------------- m1 <- integral(data_mod * h1_mod) m0 <- integral(data_mod * h0_mod) ## ----------------------------------------------------------------------------- bf <- m1 / m0 bf ## ----------------------------------------------------------------------------- data_mod <- likelihood(family = "normal", mean = 5, sd = 10) ## ----------------------------------------------------------------------------- h1_mod <- prior(family = "uniform", min = 0, max = 20) ## ----------------------------------------------------------------------------- h0_mod <- prior(family = "point", point = 0) ## ----------------------------------------------------------------------------- bf <- integral(data_mod * h1_mod) / integral(data_mod * h0_mod) bf ## ----------------------------------------------------------------------------- d <- 2.03 / sqrt(80) # convert t to d data_model <- likelihood(family = "noncentral_d", d, 80) h0_mod <- prior(family = "point", point = 0) h1_mod <- prior(family = "cauchy", scale = 1) bf <- integral(data_model * h0_mod) / integral(data_model * h1_mod) bf ## ----------------------------------------------------------------------------- d <- 2.03 / sqrt(80) # convert t to d data_model <- likelihood(family = "noncentral_d", d, 80) h0_mod <- prior(family = "point", point = 0) h1_mod <- prior(family = "normal", mean = 0, sd = 1) bf <- integral(data_model * h0_mod) / integral(data_model * h1_mod) bf ## ----------------------------------------------------------------------------- data_model <- likelihood(family = "noncentral_t", 2.03, 79) h0_mod <- prior(family = "point", point = 0) h1_mod <- prior(family = "cauchy", location = 0, scale = 1 * sqrt(80)) bf <- integral(data_model * h0_mod) / integral(data_model * h1_mod) bf