## ----SETTINGS-knitr, include=FALSE-------------------------------------------- library(bayesDP) stopifnot(require(knitr)) opts_chunk$set( #comment = NA, #message = FALSE, #warning = FALSE, #eval = if (isTRUE(exists("params"))) params$EVAL else FALSE, dev = "png", dpi = 150, fig.asp = 0.8, fig.width = 5, out.width = "60%", fig.align = "center" ) set.seed(42) fit01 <- bdpbinomial(y_t=10, N_t=500, y0_t=25, N0_t=250, method="fixed") fit02 <- bdpbinomial(y_t=10, N_t=500, y0_t=10, N0_t=250, method="fixed", discount_function="weibull") fit_scaledweibull <- bdpbinomial(y_t=10, N_t=500, y0_t=25, N0_t=250, discount_function="scaledweibull", method="fixed") fit_identity <- bdpbinomial(y_t=10, N_t=500, y0_t=10, N0_t=250, method="fixed") ## ----echo=FALSE--------------------------------------------------------------- df2 <- plot(fit_identity, type="discount", print=FALSE) df2 + ggtitle("Discount function plot", "Identity") ## ----echo=FALSE--------------------------------------------------------------- df1 <- plot(fit02, type="discount", print=FALSE) df1 + ggtitle("Discount function plot", "Weibull distribution with shape=3 and scale=0.135") ## ----------------------------------------------------------------------------- p1 <- plot(fit02, type="discount", print=FALSE) p1 + ggtitle("Discount Function Plot :-)") ## ----------------------------------------------------------------------------- set.seed(42) ### Simulate data # Sample sizes n_t <- 30 # Current treatment sample size n_c <- 30 # Current control sample size n_t0 <- 80 # Historical treatment sample size n_c0 <- 80 # Historical control sample size # Treatment group vectors for current and historical data treatment <- c(rep(1,n_t), rep(0,n_c)) treatment0 <- c(rep(1,n_t0), rep(0,n_c0)) # Simulate a covariate effect for current and historical data x <- rnorm(n_t+n_c, 1, 5) x0 <- rnorm(n_t0+n_c0, 1, 5) # Simulate outcome: # - Intercept of 10 for current and historical data # - Treatment effect of 31 for current data # - Treatment effect of 30 for historical data # - Covariate effect of 3 for current and historical data Y <- 10 + 31*treatment + x*3 + rnorm(n_t+n_c,0,5) Y0 <- 10 + 30*treatment0 + x0*3 + rnorm(n_t0+n_c0,0,5) # Place data into separate treatment and control data frames and # assign historical = 0 (current) or historical = 1 (historical) df_ <- data.frame(Y=Y, treatment=treatment, x=x) df0 <- data.frame(Y=Y0, treatment=treatment0, x=x0) # Fit model using default settings fit <- bdplm(formula=Y ~ treatment+x, data=df_, data0=df0, method="fixed") summary(fit) print(fit) #plot(fit) <-- Not yet implemented