
Package ‘auxvecLASSO’
August 28, 2025

Title LASSO Auxiliary Variable Selection and Auxiliary Vector
Diagnostics

Version 0.2.0

Description Provides tools for assessing and selecting auxiliary variables using LASSO.
The package includes functions for variable selection and diagnostics, facilitating
survey calibration analysis with emphasis on robust auxiliary vector selection. For
more details see Tibshirani (1996) <doi:10.1111/j.2517-6161.1996.tb02080.x> and
Caughrey and Hartman (2017) <doi:10.2139/ssrn.3494436>.

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 4.5.0)

Imports doParallel, parallelly, Matrix, glmnet, stats, survey, utils,
pROC, crayon

Suggests testthat (>= 3.0.0), foreach, knitr, rmarkdown, withr,
sampling, dplyr

VignetteBuilder knitr

Config/testthat/edition 3

RoxygenNote 7.3.2

URL https://github.com/gustafanderssons/auxvecLASSO-R-Package

BugReports https://github.com/gustafanderssons/auxvecLASSO-R-Package/issues

Language en

NeedsCompilation no

Author Gustaf Andersson [aut, cre, cph]

Maintainer Gustaf Andersson <gustafanderssons@gmail.com>

Repository CRAN

Date/Publication 2025-08-28 09:00:12 UTC

1

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.2139/ssrn.3494436
https://github.com/gustafanderssons/auxvecLASSO-R-Package
https://github.com/gustafanderssons/auxvecLASSO-R-Package/issues

2 assess_aux_vector

Contents
assess_aux_vector . 2
estimate_mean_stats . 6
fit_outcome . 8
generate_population_totals . 12
print.assess_aux_vector . 14
print.select_auxiliary_variables_lasso_cv . 17
select_auxiliary_variables_lasso_cv . 20

Index 24

assess_aux_vector Assess Auxiliary vector Calibration and Diagnostics

Description

This function assesses the calibration of auxiliary variables in a survey design, performs various
diagnostics, and optionally calibrates weights based on a specified calibration formula. It provides
diagnostics on weight variation, register data alignment, and survey data alignment. The results are
returned as a list of class "assess_aux_vector".

Usage

assess_aux_vector(
design,
df,
calibration_formula = NULL,
calibration_pop_totals = NULL,
register_vars = NULL,
register_pop_means = NULL,
survey_vars = NULL,
domain_vars = NULL,
diagnostics = c("weight_variation", "register_diagnostics", "survey_diagnostics"),
already_calibrated = FALSE,
verbose = FALSE

)

Arguments

design A survey design object, typically of class svydesign, representing the survey
data design.

df A data frame containing the survey data to be used in the analysis.
calibration_formula

An optional formula object specifying the auxiliary variables used for calibra-
tion (e.g., ~age + gender). If provided, the weights will be calibrated.

assess_aux_vector 3

calibration_pop_totals

An optional list of population totals for the auxiliary variables in calibration_formula.
This can be used in the calibration process.

register_vars A character vector specifying the names of the auxiliary variables from the reg-
ister data that should be used in the diagnostics. If NULL, no register diagnostics
will be performed.

register_pop_means

A list containing population means for the register variables. The list may in-
clude a "total" entry for the total population means and/or a "by_domain" entry
for domain-specific population means.

survey_vars A character vector specifying the names of the survey variables to be used in the
diagnostics. If NULL, no survey diagnostics will be performed.

domain_vars A character vector specifying the domain variables used to group data for domain-
specific diagnostics. If NULL, diagnostics will be computed for the entire sample
rather than for specific domains.

diagnostics A character vector specifying which diagnostics to compute. Possible values
include:

• "weight_variation": Computes diagnostics related to weight variation.
• "register_diagnostics": Computes diagnostics based on the register

data.
• "survey_diagnostics": Computes diagnostics based on the survey data.

The default is all three.
already_calibrated

A logical flag indicating whether the weights have already been calibrated. If
TRUE, the calibration step will be skipped.

verbose A logical flag indicating whether to print additional messages during the execu-
tion of the function. This can be useful for debugging or monitoring progress.

Details

The function supports several diagnostic checks, including weight variation diagnostics, register
diagnostics (total and by domain), and survey diagnostics (total and by domain).

The function may also calibrate survey weights based on a provided calibration formula and popu-
lation totals. Calibration can be skipped if the weights are already calibrated.

The function supports several diagnostic checks, including weight variation diagnostics, register
diagnostics (total and by domain), and survey diagnostics (total and by domain).

The function may also calibrate survey weights based on a provided calibration formula and popu-
lation totals. Calibration can be skipped if the weights are already calibrated.

The weight diagnostics contain the following measures:

• Descriptive statistics (min, max, median, mean, standard deviation (sd), range, bottom per-
centile, top percentile)

• Inequality measures (coefficient of variation, Gini index, entropy)

• Skewness and (excess) kurtosis

4 assess_aux_vector

Value

A list of class "assess_aux_vector" containing the results of the diagnostic assessments. The list
includes the following components:

• weight_variation: A numeric vector or matrix containing the results of the weight variation
diagnostics.

• register_diagnostics: A list containing diagnostics based on the register data. This may
include the total diagnostics and/or domain-specific diagnostics.

• survey_diagnostics: A list containing diagnostics based on the survey data. This may
include the total diagnostics and/or domain-specific diagnostics.

See Also

calibrate for the calibration function.

Examples

==
Example 1: Calibrate weights, then run all diagnostics
(register + survey, with a by-domain breakdown)
==
if (requireNamespace("survey", quietly = TRUE)) {

set.seed(42)
options(survey.lonely.psu = "adjust")

--- Simulate a tiny sample
n <- 200
sex <- factor(sample(c("F", "M"), n, replace = TRUE))
sex[1:2] <- c("F", "M")
sex <- factor(sex, levels = c("F", "M"))
region <- factor(sample(c("N", "S"), n, replace = TRUE))
region[1:2] <- c("N", "S")
region <- factor(region, levels = c("N", "S"))
age <- round(rnorm(n, mean = 41, sd = 12))
Register variable we have population means for:
reg_income <- 50000 + 2000 * (region == "S") + rnorm(n, sd = 4000)
A couple of survey variables to diagnose:
y1 <- 10 + 2 * (sex == "M") + rnorm(n, sd = 2)
y2 <- 100 + 5 * (region == "S") + rnorm(n, sd = 5)
Some unequal weights (to make weight-variation meaningful)
w <- runif(n, 0.6, 2.2) * 50

df <- data.frame(sex, region, age, reg_income, y1, y2, w)
design <- survey::svydesign(ids = ~1, weights = ~w, data = df)

--- Calibration setup (simple main-effects formula)
Model matrix columns will be: (Intercept), sexM, regionS, age
Npop <- 5000
pop_mean_age <- 40
calibration_formula <- ~ sex + region + age
calibration_pop_totals <- c(

assess_aux_vector 5

"(Intercept)" = Npop,
"sexM" = round(0.45 * Npop), # 45% of population is male
"regionS" = round(0.40 * Npop), # 40% in region S
"age" = pop_mean_age * Npop # totals (mean * N)

)

--- Register population means: total + by domain (single register var)
register_vars <- "reg_income"
register_pop_means <- list(

total = c(reg_income = 51000), # overall pop mean
by_domain = list(

region = c(N = 50000, S = 52000) # domain-specific pop means
)

)

out1 <- assess_aux_vector(
design = design,
df = df,
calibration_formula = calibration_formula,
calibration_pop_totals = calibration_pop_totals,
register_vars = register_vars,
register_pop_means = register_pop_means,
survey_vars = c("y1", "y2"),
domain_vars = c("region"),

diagnostics = c("weight_variation", "register_diagnostics", "survey_diagnostics"),
already_calibrated = FALSE,
verbose = FALSE

)

Peek at key outputs:
out1$weight_variation
out1$register_diagnostics$total
out1$register_diagnostics$by_domain$region
out1$survey_diagnostics$total

}

==
Example 2: Skip calibration; survey diagnostics by domain
==
if (requireNamespace("survey", quietly = TRUE)) {

set.seed(99)
options(survey.lonely.psu = "adjust")

n <- 120
region <- factor(sample(c("N", "S"), n, replace = TRUE))
region[1:2] <- c("N", "S")
region <- factor(region, levels = c("N", "S"))
sex <- factor(sample(c("F", "M"), n, replace = TRUE))
sex[1:2] <- c("F", "M")
sex <- factor(sex, levels = c("F", "M"))
age <- round(rnorm(n, 39, 11))
yA <- rnorm(n, mean = 50 + 3 * (region == "S"))
yB <- rnorm(n, mean = 30 + 1.5 * (sex == "M"))

6 estimate_mean_stats

w <- runif(n, 0.7, 1.8) * 40

toy <- data.frame(region, sex, age, yA, yB, w)
des <- survey::svydesign(ids = ~1, weights = ~w, data = toy)

out2 <- assess_aux_vector(
design = des,
df = toy,
calibration_formula = NULL, # skip calibration
calibration_pop_totals = NULL,
register_vars = NULL, # no register diagnostics
survey_vars = c("yA", "yB"),
domain_vars = "region",
diagnostics = c("weight_variation", "survey_diagnostics"),
already_calibrated = TRUE, # explicitly skip calibration
verbose = FALSE

)

out2$weight_variation
out2$survey_diagnostics$by_domain$region

}

estimate_mean_stats Estimate Survey-Weighted Means (Overall or By Domain)

Description

Computes survey-weighted means and standard errors for one or more variables in a survey design,
optionally stratified by domains (e.g., regions, groups). If population means are provided, it also
calculates the bias and mean squared error (MSE) of the estimates compared to the population
means.

Usage

estimate_mean_stats(design, vars, by = NULL, population_means = NULL)

Arguments

design A survey design object (e.g., from the survey package). The object must contain
survey data and weights.

vars A character vector of variable names to compute means for. These variables
must exist in design$variables.

by Optional. A one-sided formula (e.g., ~region) or a character vector of domain
variables for stratified analysis. If NULL, computes overall means across all data.

population_means

Optional. A named numeric vector with population means (for by = NULL) or a
data frame containing domain variables and population means (for by not NULL).
Used to calculate bias and MSE for each variable.

estimate_mean_stats 7

Details

• Observations with non-finite weights are excluded from the analysis globally.

• For each variable, observations with non-finite values are also dropped (in addition to the
global weight filter). An error will occur if no valid data remains.

• For domain-specific means, population_means must include all domain columns and the
variable being estimated. The rows are merged by domain key.

Value

A named list where each component is a data frame with the following columns:

domain columns Columns for the domain variables (if by is specified).

variable The name of the variable.

mean The survey-weighted mean of the variable.

se The standard error of the survey-weighted mean.

bias The difference between the survey-weighted mean and the population mean. NA if population_means
is not provided.

mse The mean squared error (MSE) of the survey-weighted mean. NA if population_means is not
provided.

Examples

==
Example 1: Overall means with population means (bias/MSE)
==
if (requireNamespace("survey", quietly = TRUE)) {

set.seed(123)
options(survey.lonely.psu = "adjust")

n <- 200
region <- factor(sample(c("N", "S"), n, replace = TRUE))
sex <- factor(sample(c("F", "M"), n, replace = TRUE))
y <- 10 + 2 * (sex == "M") + rnorm(n, sd = 1.5)
z <- 100 + 5 * (region == "S") + rnorm(n, sd = 3)
w <- runif(n, 0.8, 1.8) * 50
df <- data.frame(region, sex, y, z, w)

des <- survey::svydesign(ids = ~1, weights = ~w, data = df)

Named vector of population means for overall case
pop_means <- c(y = 11.2, z = 103.0)

res_overall <- estimate_mean_stats(
design = des,
vars = c("y", "z"),
by = NULL,
population_means = pop_means

)

8 fit_outcome

Each element is a one-row data frame
res_overall$y
res_overall$z

}

==
Example 2: Domain means by region with population means table
==
if (requireNamespace("survey", quietly = TRUE)) {

set.seed(456)
options(survey.lonely.psu = "adjust")

n <- 150
region <- factor(sample(c("N", "S"), n, replace = TRUE), levels = c("N", "S"))
sex <- factor(sample(c("F", "M"), n, replace = TRUE))
y <- 12 + 1.5 * (region == "S") + rnorm(n, sd = 1.2)
z <- 95 + 6 * (region == "S") + rnorm(n, sd = 2.5)
w <- runif(n, 0.7, 2.0) * 40
toy <- data.frame(region, sex, y, z, w)

des2 <- survey::svydesign(ids = ~1, weights = ~w, data = toy)

Population means by domain must include the domain column(s) + vars
pop_by_region <- data.frame(

region = c("N", "S"),
y = c(12.2, 13.8),
z = c(95.5, 101.0),
stringsAsFactors = FALSE

)

res_by <- estimate_mean_stats(
design = des2,
vars = c("y", "z"),
by = ~region, # or equivalently: by = "region"
population_means = pop_by_region # merged by the 'region' key

)

Each element is a data frame with domain rows
res_by$y
res_by$z

}

fit_outcome Fit LASSO model for a single outcome with cross-validation

Description

Fits a LASSO regression model (logistic regression for binary outcomes or linear regression for
continuous outcomes) for a single outcome variable using cross-validation. The function drops

fit_outcome 9

rows where the outcome is missing, and ensures that the predictors do not have missing values. The
model is fitted using the glmnet package, with the option to apply cross-validation for selecting the
optimal regularization parameter (lambda).

Usage

fit_outcome(
yvar,
df,
X,
penalty_factors,
nfolds = 5,
standardize = TRUE,
parallel = FALSE,
return_models = FALSE,
verbose = FALSE

)

Arguments

yvar Character scalar. The name of the outcome variable in df. This can be either a
binary or continuous outcome variable.

df Data frame containing the outcome and predictors. The outcome variable (yvar)
and predictor variables must be included in df.

X Model matrix (rows must align with df). The matrix must not contain missing
values, and its rows must match those in df.

penalty_factors

Named numeric vector of penalty factors for each predictor variable. The names
should match the column names of X.

nfolds Number of folds for cross-validation. Default is 5.

standardize Logical; should the predictors be standardized before fitting the model? Default
is TRUE.

parallel Logical; should the cross-validation be performed in parallel? Default is FALSE.

return_models Logical; should the fitted cv.glmnet object be returned? Default is FALSE.

verbose Logical; if TRUE, prints progress messages. Default is FALSE.

Details

• The outcome variable (yvar) can be either binary or continuous:

– Binary outcomes: LASSO logistic regression is used. The outcome variable must have
exactly two levels after missing values are removed.

– Continuous outcomes: LASSO linear regression is used. The outcome variable should
be numeric.

• Rows with missing values for the outcome (yvar) or predictors (X) will be dropped.

• The function uses the glmnet package to fit the LASSO model.

• Cross-validation is used to select the optimal regularization parameter (lambda).

10 fit_outcome

• Model performance metrics, including AUC, accuracy, Brier score (for binary outcomes)
or RSS, MSE, RMSE, MAE, R-squared (for continuous outcomes), are computed on the
non-missing rows.

Value

A list containing:

selected A character vector of the names of the selected variables (non-zero coefficients).

lambda_min The value of lambda that minimizes the cross-validation error.

goodness A list containing performance metrics for the model:

• cross_validated: A list with cv_error (cross-validation error) and cv_error_sd (stan-
dard deviation of CV error).

• full_data: A list with:
• deviance_explained: Proportion of deviance explained by the model (only for binary

outcomes).
• auc: Area under the ROC curve (only for binary outcomes).
• accuracy: Classification accuracy (only for binary outcomes).
• brier_score: Brier score (mean squared error for probabilities) (only for binary out-

comes).
• rss: Residual sum of squares (only for continuous outcomes).
• mse: Mean squared error (only for continuous outcomes).
• rmse: Root mean squared error (only for continuous outcomes).
• mae: Mean absolute error (only for continuous outcomes).
• r_squared: R-squared (only for continuous outcomes).
• raw_coefs: Raw coefficients from the LASSO model.
• abs_coefs: Absolute values of the coefficients.

model The fitted cv.glmnet model, if return_models = TRUE. Otherwise, NULL.

Examples

==
Example 1: Binary outcome (binomial LASSO with CV)
==
if (requireNamespace("glmnet", quietly = TRUE) &&

requireNamespace("pROC", quietly = TRUE)) {
set.seed(101)

n <- 180
x1 <- rnorm(n)
x2 <- rnorm(n)
f <- factor(sample(c("A", "B", "C"), n, replace = TRUE))

Construct a binary outcome with signal in x2 and x1:x2
lin <- -0.3 + 1.0 * x2 + 0.6 * (x1 * x2) - 0.7 * (f == "C")
p <- 1 / (1 + exp(-lin))
yfac <- factor(rbinom(n, 1, p), labels = c("No", "Yes")) # 2-level factor

fit_outcome 11

df <- data.frame(y = yfac, x1 = x1, x2 = x2, f = f)

Model matrix with main effects + one interaction, no intercept
X <- model.matrix(~ x1 + x2 + f + x1:x2 - 1, data = df)

Penalty factors must match X's columns (names + length).
penalty_factors <- rep(1, ncol(X))
names(penalty_factors) <- colnames(X)
(Optional) keep x1 unpenalized:
if ("x1" %in% names(penalty_factors)) penalty_factors["x1"] <- 0

fit_bin <- fit_outcome(
yvar = "y",
df = df,
X = X,
penalty_factors = penalty_factors,
nfolds = 3,
standardize = TRUE,
parallel = FALSE,
return_models = FALSE,
verbose = FALSE

)

Peek at the results
fit_bin$selected
fit_bin$lambda_min
fit_bin$goodness$full_data$auc
fit_bin$goodness$full_data$accuracy

}

==
Example 2: Continuous outcome (gaussian LASSO with CV)
==
if (requireNamespace("glmnet", quietly = TRUE)) {

set.seed(202)

n <- 160
x1 <- rnorm(n)
x2 <- rnorm(n)
f <- factor(sample(c("L", "H"), n, replace = TRUE))

y <- 1.5 * x1 + 0.8 * x2 - 1.0 * (f == "H") + 0.6 * (x1 * x2) + rnorm(n, sd = 0.7)
df <- data.frame(y = y, x1 = x1, x2 = x2, f = f)

Main effects only, no intercept
X <- model.matrix(~ x1 + x2 + f - 1, data = df)

penalty_factors <- rep(1, ncol(X))
names(penalty_factors) <- colnames(X)

fit_cont <- fit_outcome(
yvar = "y",
df = df,

12 generate_population_totals

X = X,
penalty_factors = penalty_factors,
nfolds = 3,
standardize = TRUE,
parallel = FALSE,
return_models = FALSE,
verbose = FALSE

)

Key metrics
fit_cont$selected
fit_cont$lambda_min
fit_cont$goodness$full_data$mse
fit_cont$goodness$full_data$r_squared

}

generate_population_totals

Generate population totals for a calibration design matrix

Description

Build a fixed model matrix on a population frame and return the column totals needed for cali-
bration (optionally weighted). The function freezes dummy/interaction structure on the population
by constructing a terms object, so downstream use on respondent data can reuse the exact same
encoding.

Usage

generate_population_totals(
population_df,
calibration_formula,
weights = NULL,
contrasts = NULL,
include_intercept = TRUE,
sparse = FALSE,
na_action = stats::na.pass,
drop_zero_cols = FALSE

)

Arguments

population_df A data frame containing the calibration population.
calibration_formula

A one-sided formula specifying main effects and interactions (e.g., ~ stype +
api00_bin:stype). The intercept is handled by include_intercept.

generate_population_totals 13

weights Optional numeric vector of population weights (length nrow(population_df)).
If NULL (default), unweighted totals are computed.

contrasts Optional named list of contrasts to pass to model.matrix() (e.g., list(stype
= contr.treatment)). If NULL, the current global options(contrasts=...)
are used.

include_intercept

Logical; if TRUE (default) keep the (Intercept) column in the totals (it will
sum to sum(weights) or nrow(population_df) if unweighted).

sparse Logical; if TRUE, return the population model matrix internally as a sparse Ma-
trix while computing totals. (Totals are always returned as a base numeric vec-
tor.)

na_action NA handling passed to model.frame(); defaults to stats::na.pass. Consider
stats::na.omit for stricter behavior.

drop_zero_cols Logical; if TRUE, drop columns whose population total is exactly zero. Default
FALSE. A message is emitted if any zero-total columns are found.

Value

An object of class "calib_totals": a list with

• population_totals: named numeric vector of column totals

• levels: list of factor levels observed in the population (for reproducibility)

• terms: the terms object built on population_df

• contrasts: the contrasts actually used (from the model matrix)

Examples

Example using the API data from the survey package
library(survey)
data(api) # loads apipop, apisrs, apistrat, etc.

Build a population frame and create some binary fields used in a formula
pop <- apipop
pop$api00_bin <- as.factor(ifelse(pop$api00 >= 700, "700plus", "lt700"))
pop$growth_bin <- as.factor(ifelse(pop$growth >= 0, "nonneg", "neg"))
pop$ell_bin <- as.factor(ifelse(pop$ell >= 10, "highELL", "lowELL"))
pop$comp.imp_bin <- as.factor(ifelse(pop$comp.imp >= 50, "highComp", "lowComp"))
pop$hsg_bin <- as.factor(ifelse(pop$hsg >= 60, "highHSG", "lowHSG"))

A calibration formula with main effects + a few interactions
cal_formula <- ~ stype + growth_bin + api00_bin + ell_bin + comp.imp_bin + hsg_bin +

api00_bin:stype + hsg_bin:stype + comp.imp_bin:stype + api00_bin:growth_bin

(Optional) frame weights if available; here we use unweighted totals
gp <- generate_population_totals(

population_df = pop,
calibration_formula = cal_formula,
include_intercept = TRUE

)

14 print.assess_aux_vector

Named totals ready for calibration:
head(gp$population_totals)

If you later build a respondent model matrix, reuse gp$terms to ensure alignment:
X_resp <- model.matrix(gp$terms, data = apisrs)
stopifnot(identical(colnames(X_resp), names(gp$population_totals)))

print.assess_aux_vector

Print Summary of Auxiliary Vector Assessment

Description

S3 print method for objects of class assess_aux_vector. Displays a formatted, colorized summary
of weight variation metrics, register diagnostics (overall and by domain), and survey diagnostics
(overall and by domain).

Usage

S3 method for class 'assess_aux_vector'
print(x, ...)

Arguments

x An object of class assess_aux_vector containing diagnostic results. Expected
to have components:

weight_variation Named numeric vector or list of weight variation metrics.
register_diagnostics List with total and by_domain components. Each inner

data frame typically includes columns variable, mean, se, rse, bias, mse,
and (when population means are available) p_bias.

survey_diagnostics List with total and by_domain components. Each inner
data frame typically includes columns variable, mean, se, rse; bias, mse,
and p_bias are NA unless population means were provided.

... Additional arguments (currently ignored).

Details

In addition to means and standard errors, the printer shows the relative standard error (RSE =
SE / |mean|) and—when population means are supplied to estimate_mean_stats()—two-sided
p-values for the bias testing H0 : mean = population mean.

Requires the crayon package for colored output.

The print method outputs sections with colored headers for easier readability:

• Weight Variation Metrics

print.assess_aux_vector 15

• Register Diagnostics summarized for all units and by domain

• Survey Diagnostics summarized for all units and by domain

For each variable shown, the following metrics are printed when present:

• Mean — survey-weighted mean.

• SE — design-based standard error from survey.

• RSE — relative standard error, SE/|Mean|.
• Bias — difference between estimate and population mean (if supplied).

• MSE — Bias2 + SE2 (if population means supplied).

• p(Bias) — two-sided p-value testing H0 : Bias = 0, computed as 2Φ(−|z|) with z =
Bias/SE (shown when population means are available).

Edge cases: if mean == 0 the RSE is reported as NA; if SE == 0, p(Bias) is 1 when |Bias| is
numerically zero and 0 otherwise. Objects created with earlier versions that lack rse or p_bias
columns are handled gracefully (those fields are simply not printed).

If the crayon package is not installed, the function will stop with an error.

Value

Invisibly returns the input object x.

Examples

==
Example 1: Print with register + survey diagnostics
(includes population means -> prints p(Bias))
==
if (requireNamespace("survey", quietly = TRUE) &&

requireNamespace("crayon", quietly = TRUE)) {
set.seed(7)
options(survey.lonely.psu = "adjust")

--- Simulate a small survey
n <- 180
sex <- factor(sample(c("F", "M"), n, replace = TRUE), levels = c("F", "M"))
region <- factor(sample(c("N", "S"), n, replace = TRUE), levels = c("N", "S"))
age <- round(rnorm(n, mean = 42, sd = 12))
reg_income <- 52000 + 1500 * (region == "S") + rnorm(n, sd = 3500) # register var
y1 <- 10 + 1.8 * (sex == "M") + rnorm(n, sd = 2) # survey vars
y2 <- 95 + 4.5 * (region == "S") + rnorm(n, sd = 3.5)
w <- runif(n, 0.7, 2.1) * 40
df <- data.frame(sex, region, age, reg_income, y1, y2, w)
des <- survey::svydesign(ids = ~1, weights = ~w, data = df)

--- Optional calibration inputs (simple main effects)
Model matrix columns: (Intercept), sexM, regionS, age
Npop <- 4000
calibration_formula <- ~ sex + region + age
calibration_pop_totals <- c(

16 print.assess_aux_vector

"(Intercept)" = Npop,
"sexM" = round(0.48 * Npop),
"regionS" = round(0.52 * Npop),
"age" = 41 * Npop

)

--- Population means for the register var: total + by domain
register_vars <- "reg_income"
register_pop_means <- list(

total = c(reg_income = 52500),
by_domain = list(

region = c(N = 51500, S = 53500)
)

)

--- Build assessment object
aux1 <- assess_aux_vector(

design = des,
df = df,
calibration_formula = calibration_formula,
calibration_pop_totals = calibration_pop_totals,
register_vars = register_vars,
register_pop_means = register_pop_means,
survey_vars = c("y1", "y2"),
domain_vars = "region",

diagnostics = c("weight_variation", "register_diagnostics", "survey_diagnostics"),
already_calibrated = FALSE,
verbose = FALSE

)

Colorized, formatted summary:
print(aux1)

}

==
Example 2: Print with survey diagnostics only (by domain)
(no population means -> p(Bias) omitted)
==
if (requireNamespace("survey", quietly = TRUE) &&

requireNamespace("crayon", quietly = TRUE)) {
set.seed(11)
options(survey.lonely.psu = "adjust")

n <- 120
region <- factor(sample(c("N", "S"), n, replace = TRUE), levels = c("N", "S"))
sex <- factor(sample(c("F", "M"), n, replace = TRUE), levels = c("F", "M"))
yA <- 50 + 2.5 * (region == "S") + rnorm(n, sd = 2)
yB <- 30 + 1.5 * (sex == "M") + rnorm(n, sd = 1.5)
w <- runif(n, 0.8, 1.9) * 35
toy <- data.frame(region, sex, yA, yB, w)

des2 <- survey::svydesign(ids = ~1, weights = ~w, data = toy)

print.select_auxiliary_variables_lasso_cv 17

aux2 <- assess_aux_vector(
design = des2,
df = toy,
calibration_formula = NULL, # skip calibration
calibration_pop_totals = NULL,
register_vars = NULL, # no register diagnostics
survey_vars = c("yA", "yB"),
domain_vars = "region",
diagnostics = c("weight_variation", "survey_diagnostics"),
already_calibrated = TRUE,
verbose = FALSE

)

print(aux2)
}

print.select_auxiliary_variables_lasso_cv

Print Summary of LASSO Auxiliary Variable Selection Object

Description

S3 print method for objects of class select_auxiliary_variables_lasso_cv. Displays a format-
ted and colorized summary of the selected auxiliary variables, their grouping by outcome, selected
penalty parameters (lambdas), penalty factors, stored models, goodness-of-fit metrics, coefficient
estimates, and interaction metadata.

Usage

S3 method for class 'select_auxiliary_variables_lasso_cv'
print(x, ...)

Arguments

x An object of class select_auxiliary_variables_lasso_cv containing re-
sults from LASSO auxiliary variable selection with cross-validation. Expected
to have components:

selected_variables Character vector of variables selected across outcomes.
by_outcome Named list, with each element a character vector of selected vari-

ables for that outcome.
selected_lambdas Named numeric vector or list of selected lambda values by

outcome.
penalty_factors Numeric vector of penalty factors (0 = must-keep, 1 = regular

penalty).
models List of fitted models stored for each outcome.

18 print.select_auxiliary_variables_lasso_cv

goodness_of_fit Named list of goodness-of-fit results by outcome, each con-
taining cross_validated (with cv_error, cv_error_sd) and full_data
(with deviance_explained, auc, accuracy, brier_score, raw_coefs).

interaction_metadata List with interaction_terms, main_effects_in_interactions,
and full_formula.

... Additional arguments (currently ignored).

Details

Requires the crayon package for colored output.

The print method outputs information using colored text (via crayon), making it easier to visually
parse the summary. It organizes output into sections:

• Selected variables and their counts

• Variables selected by each outcome

• Selected lambda tuning parameters

• Summary of penalty factors

• Number of stored models

• Goodness-of-fit metrics for each outcome, including cross-validation error statistics and met-
rics on full data fit

• Coefficients at the lambda minimizing error, ordered by magnitude

• Interaction terms and main effects metadata

If the crayon package is not installed, the function will stop with an error.

Value

Invisibly returns the input object x.

Examples

==
Example 1: Binary + continuous outcomes, with interactions
(prints selected vars, lambdas, GOF, coef table, interactions)
==
if (requireNamespace("glmnet", quietly = TRUE) &&

requireNamespace("pROC", quietly = TRUE) &&
requireNamespace("crayon", quietly = TRUE)) {
set.seed(123)

n <- 180
x1 <- rnorm(n)
x2 <- rnorm(n)
grp <- factor(sample(c("A", "B", "C"), n, replace = TRUE))

Binary outcome with signal in x2, grp, and x1:x2 (make it a 2-level factor)
eta <- -0.4 + 1.0 * x2 - 0.8 * (grp == "C") + 0.6 * (x1 * x2)
p <- 1 / (1 + exp(-eta))

print.select_auxiliary_variables_lasso_cv 19

y_bin <- factor(rbinom(n, 1, p), labels = c("No", "Yes"))

Continuous outcome with some interaction
y_cont <- 1.4 * x1 + 0.9 * x2 - 1.1 * (grp == "B") + 0.5 * (x1 * x2) + rnorm(n, sd = 0.7)

df <- data.frame(y_bin = y_bin, y_cont = y_cont, x1 = x1, x2 = x2, grp = grp)

lasso_obj1 <- select_auxiliary_variables_lasso_cv(
df = df,
outcome_vars = c("y_bin", "y_cont"),
auxiliary_vars = c("x1", "x2", "grp"),
must_have_vars = c("x1", "grp"), # 'grp' expands to its dummy columns
check_twoway_int = TRUE, # include all two-way interactions
nfolds = 3,
verbose = FALSE,
standardize = TRUE,
return_models = FALSE, # models not stored (printer still shows GOF & coefs)
parallel = FALSE

)

Colorized, formatted summary:
print(lasso_obj1)

}

==
Example 2: Single continuous outcome, main effects only
(stores model so the printer reports it)
==
if (requireNamespace("glmnet", quietly = TRUE) &&

requireNamespace("crayon", quietly = TRUE)) {
set.seed(456)

n <- 140
a <- rnorm(n)
b <- rnorm(n)
f <- factor(sample(c("L", "H"), n, replace = TRUE))
y <- 2 * a + 0.8 * b - 1.2 * (f == "H") + rnorm(n, sd = 0.8)

toy <- data.frame(y = y, a = a, b = b, f = f)

lasso_obj2 <- select_auxiliary_variables_lasso_cv(
df = toy,
outcome_vars = "y",
auxiliary_vars = c("a", "b", "f"),
must_have_vars = "f", # keep factor (its dummies get zero penalty)
check_twoway_int = FALSE, # main effects only
nfolds = 3,
verbose = FALSE,
standardize = TRUE,
return_models = TRUE, # store cv.glmnet model
parallel = FALSE

)

20 select_auxiliary_variables_lasso_cv

print(lasso_obj2)
}

select_auxiliary_variables_lasso_cv

Select Auxiliary Variables via LASSO with Cross-Validation (Binary
and Continuous Outcomes)

Description

This function performs LASSO-penalized regression (logistic regression for binary outcomes or lin-
ear regression for continuous outcomes) with cross-validation to select auxiliary variables for mod-
eling one or more outcome variables. It allows for the inclusion of all two-way interactions among
the auxiliary variables and the option to force certain variables to remain in the model through the
use of zero penalty factors.

Usage

select_auxiliary_variables_lasso_cv(
df,
outcome_vars,
auxiliary_vars,
must_have_vars = NULL,
check_twoway_int = TRUE,
nfolds = 5,
verbose = TRUE,
standardize = TRUE,
return_models = FALSE,
parallel = FALSE

)

Arguments

df A data frame containing the data for modeling.

outcome_vars Character vector of outcome variable names to model. These can be either bi-
nary or continuous outcomes. Each must exist in df and have at least two unique
values (after factor conversion for binary outcomes).

auxiliary_vars Character vector of auxiliary variable names to be used as predictors.

must_have_vars Optional character vector of variable names that must be included in the model
(penalty factor 0). If interactions are included, any interaction containing a must-
have variable is also assigned zero penalty. The variables in must_have_vars
should refer to either individual variables or the main effect part of interaction
terms.

check_twoway_int

Logical; include all two-way interactions among auxiliary variables. Defaults to
TRUE.

select_auxiliary_variables_lasso_cv 21

nfolds Number of folds for cross-validation. Defaults to 5.

verbose Logical; print progress messages. Defaults to TRUE.

standardize Logical; standardize predictors before fitting. Defaults to TRUE.

return_models Logical; return fitted cv.glmnet objects. Defaults to FALSE.

parallel Logical; run cross-validation in parallel (requires doParallel). Defaults to FALSE.

Details

The function supports both binary and continuous outcomes. For binary outcomes, logistic regres-
sion is used, and for continuous outcomes, linear regression is used. The function outputs a list with
the selected variables across outcomes, the associated lambda values, the goodness-of-fit statistics,
and optionally the fitted models and interaction terms.

The function supports two types of outcome variables:

• Binary outcomes: LASSO logistic regression is used. The outcome variable must have ex-
actly two levels after missing values are removed.

• Continuous outcomes: LASSO linear regression is used. The outcome variable should be
numeric.

For factor variables in auxiliary_vars, dummy variables are created to represent each level of the
factor. If a factor variable is specified in must_have_vars, its dummy variables will be included in
the model, ensuring that any interactions containing those variables are also forced into the model.

Value

An object of class "select_auxiliary_variables_lasso_cv" with the following components:

selected_variables Character vector of variables selected across all outcome models. This includes
the main effect variables and any interaction terms.

by_outcome Named list of character vectors, each containing the selected variables for each out-
come.

selected_lambdas Named numeric vector of lambda values (specifically, lambda.min) for each
outcome.

penalty_factors Named numeric vector with penalty factors (0 for must-keep, 1 otherwise).

models List of cv.glmnet objects per outcome if return_models = TRUE, otherwise an empty list.

goodness_of_fit Named list per outcome with cross-validation metrics (cv_error, cv_error_sd) and
full data metrics (deviance_explained for binary outcomes, auc, accuracy, brier_score, rss,
mse, r_squared, raw_coefs).

interaction_metadata List containing metadata on interaction terms, main effects in interactions,
and the full formula used.

Examples

--
Example 1: Binary + continuous outcomes, with interactions
and must-have variables (factor expanded to dummies)
--

22 select_auxiliary_variables_lasso_cv

set.seed(123)
n <- 150
x1 <- rnorm(n)
x2 <- rnorm(n)
group <- factor(sample(c("A", "B", "C"), n, replace = TRUE))

Generate outcomes with some signal in x1, x2 and group, plus an interaction
eta_bin <- -0.5 + 1.2 * x2 - 0.8 * (group == "C") + 0.5 * x1 * x2
p <- 1 / (1 + exp(-eta_bin))
y_bin <- rbinom(n, 1, p)
y_cont <- 1.5 * x1 - 2 * (group == "B") + 0.7 * x1 * x2 + rnorm(n, sd = 0.7)

df <- data.frame(y_bin = y_bin, y_cont = y_cont, x1 = x1, x2 = x2, group = group)

res1 <- select_auxiliary_variables_lasso_cv(
df = df,
outcome_vars = c("y_bin", "y_cont"),
auxiliary_vars = c("x1", "x2", "group"),
must_have_vars = c("x1", "group"), # 'group' (factor) expands to its dummies
check_twoway_int = TRUE,
nfolds = 3,
verbose = FALSE,
standardize = TRUE,
return_models = FALSE

)

Inspect selections and metadata
res1$selected_variables
res1$by_outcome
res1$selected_lambdas
names(which(res1$penalty_factors == 0)) # must-keep terms (incl. factor dummies & interactions)
res1$interaction_metadata$full_formula

--
Example 2: Single continuous outcome, main effects only
--
set.seed(456)
n2 <- 120
a <- rnorm(n2)
b <- rnorm(n2)
f <- factor(sample(c("a", "b"), n2, replace = TRUE))
y <- 2 * a - 1 * (f == "b") + rnorm(n2, sd = 1)

toy <- data.frame(y = y, a = a, b = b, f = f)

res2 <- select_auxiliary_variables_lasso_cv(
df = toy,
outcome_vars = "y",
auxiliary_vars = c("a", "b", "f"),
check_twoway_int = FALSE, # main effects only
nfolds = 3,
verbose = FALSE

)

select_auxiliary_variables_lasso_cv 23

res2$selected_variables
res2$selected_lambdas
res2$goodness_of_fit$y

Index

assess_aux_vector, 2

calibrate, 4

estimate_mean_stats, 6

fit_outcome, 8

generate_population_totals, 12

print.assess_aux_vector, 14
print.select_auxiliary_variables_lasso_cv,

17

select_auxiliary_variables_lasso_cv,
20

24

	assess_aux_vector
	estimate_mean_stats
	fit_outcome
	generate_population_totals
	print.assess_aux_vector
	print.select_auxiliary_variables_lasso_cv
	select_auxiliary_variables_lasso_cv
	Index

