Dynamic regression for time series using Extreme Gradient Boosting with hyper-parameter tuning via Bayesian Optimization or Random Search.
| Version: | 2.0.1 | 
| Depends: | R (≥ 4.1) | 
| Imports: | rBayesianOptimization (≥ 1.2.0), xgboost (≥ 1.4.1.1), purrr (≥ 0.3.4), ggplot2 (≥ 3.3.5), readr (≥ 2.1.2), stringr (≥ 1.4.0), lubridate (≥ 1.7.10), narray (≥ 0.4.1.1), fANCOVA (≥ 0.6-1), imputeTS (≥ 3.2), scales (≥ 1.1.1), tictoc (≥ 1.0.1), modeest (≥ 2.4.0), moments (≥ 0.14), Metrics (≥ 0.1.4), parallel (≥ 4.1.1), utils (≥ 4.1.1), stats (≥ 4.1.1) | 
| Published: | 2022-03-23 | 
| DOI: | 10.32614/CRAN.package.audrex | 
| Author: | Giancarlo Vercellino | 
| Maintainer: | Giancarlo Vercellino <giancarlo.vercellino at gmail.com> | 
| License: | GPL-3 | 
| URL: | https://rpubs.com/giancarlo_vercellino/audrex | 
| NeedsCompilation: | no | 
| Materials: | NEWS | 
| CRAN checks: | audrex results | 
| Reference manual: | audrex.html , audrex.pdf | 
| Package source: | audrex_2.0.1.tar.gz | 
| Windows binaries: | r-devel: audrex_2.0.1.zip, r-release: audrex_2.0.1.zip, r-oldrel: audrex_2.0.1.zip | 
| macOS binaries: | r-release (arm64): audrex_2.0.1.tgz, r-oldrel (arm64): audrex_2.0.1.tgz, r-release (x86_64): audrex_2.0.1.tgz, r-oldrel (x86_64): audrex_2.0.1.tgz | 
| Old sources: | audrex archive | 
Please use the canonical form https://CRAN.R-project.org/package=audrex to link to this page.