## ---- echo = FALSE, message = FALSE, warning=FALSE---------------------------- library(knitr) knitr::opts_chunk$set( cache = FALSE, dpi = 75, fig.width = 6, fig.height = 6, fig.keep = 'high', # comment = "#>", tidy = FALSE) ## ----dataexample-------------------------------------------------------------- library("asymmetry") data("studentmigration") idx <- c(3,4,25,27,31) #select five countries studentmigration[idx,idx] ## ----example------------------------------------------------------------------ q1 <- skewsymmetry(studentmigration[idx,idx]) q1$A ## ----symm--------------------------------------------------------------------- q1$S ## ----example2----------------------------------------------------------------- summary(q1) ## ----clustering--------------------------------------------------------------- clus <- hclust(as.dist(1/q1$S)) plot(clus,xlab=NA,sub=NA) ## ----linear------------------------------------------------------------------- q1$linear ## ----example3, echo=TRUE------------------------------------------------------ library(RColorBrewer) # creates a color palette from red to blue my_palette <- colorRampPalette(c("red", "white", "blue"))(n = 299) col_breaks = c(seq(-4000,-.001,length=100), # negative values are red seq(-.001,0.01,length=100), # zeroes are white seq(0.01,4000,length=100)) # positive values are blue hmap(q1, col = my_palette) ## ----example4----------------------------------------------------------------- data(studentmigration) idx <- c(18,22,27,2,13,31) #select 6 countries q1 <- skewsymmetry(studentmigration[idx,idx]) q1$A ## ----studentmigration1 , fig.width = 8, fig.height = 8------------------------ # creates a color palette from red to blue my_palette <- colorRampPalette(c("red", "white", "blue"))(n = 299) col_breaks = c(seq(-4000,-.001,length=100), # negative values are red seq(-.001,0.01,length=100), # zeroes are white seq(0.01,4000,length=100)) # positive values are blue data(studentmigration) hmap(studentmigration[idx,idx], dominance = FALSE, col = my_palette, key = FALSE, xlab = "Destination country", ylab = "Home country", colsep = c(1:6), rowsep = c(1:6)) ## ----englishtowns, fig.width = 8, fig.height = 8------------------------------ data(Englishtowns) v<-slidevector(Englishtowns, ndim = 2, itmax = 2500, eps = .0000001, verbose = FALSE) plot(v,col="blue",ylim=c(-300,300),xlim=c(-300,300)) ## ----englishtownsdecomp------------------------------------------------------- q2 <- skewsymmetry(v$resid) summary(q2) ## ----migrationunique---------------------------------------------------------- data("studentmigration") mm<-studentmigration mm[mm==0]<-.5 # replace zeroes by a small number mm <- -log(mm/sum(mm)) # convert similarities to dissimilarities v<-mdsunique(mm, ndim = 2, itmax = 2100, verbose=FALSE, eps = .0000000001) plot(v, yplus = .3, ylim = c(-4.5, 4), xlim = c(-4.5, 4))